The Binomial theorem (answers at the end)

- 1 Expand $(3 + 4x)^3$.
- 2 Find the first three terms in the expansions, in ascending powers of x, of
 - (a) $(1+4x)^{10}$,
- (b) $(1-2x)^{16}$.
- 3 Find the coefficient of a^3b^5 in the expansions of
 - (a) $(3a-2b)^8$,
- (b) $(5a + \frac{1}{2}b)^8$.
- 4 Expand $(3 + 5x)^7$ in ascending powers of x up to and including the term in x^2 . By putting x = 0.01, find an approximation, correct to the nearest whole number, to 3.05^7 .
- 5 Obtain the first four terms in the expansion of $(2 + \frac{1}{4}x)^8$ in ascending powers of x. By substituting an appropriate value of x into this expansion, find the value of 2.0025^8 correct to three decimal places. (OCR)
- **6** Find, in ascending powers of x, the first three terms in the expansion of $(2 3x)^8$. Use the expansion to find the value of 1.997^8 to the nearest whole number. (OCR)
- 7 Expand $\left(x^2 + \frac{1}{x}\right)^3$, simplifying each of the terms.
- 8 Expand $\left(2x \frac{3}{x^2}\right)^4$.
- 9 Expand and simplify $\left(x + \frac{1}{2x}\right)^6 + \left(x \frac{1}{2x}\right)^6$. (OCR)
- 10 Find the coefficient of x^2 in the expansion of $\left(x^4 + \frac{4}{x}\right)^3$.
- 11 Find the term independent of *x* in the expansion of $\left(2x + \frac{5}{x}\right)^6$.
- 12 Find the coefficient of y^4 in the expansion of $(1+y)^{12}$. Deduce the coefficient of
 - (a) y^4 in the expansion of $(1+3y)^{12}$,
 - (b) y^8 in the expansion of $(1-2y^2)^{12}$,
 - (c) x^8y^4 in the expansion of $(x + \frac{1}{2}y)^{12}$.
- 13 Determine the coefficient of p^4q^7 in the expansion of $(2p-q)(p+q)^{10}$.
- 14 Find the first three terms in the expansion of $(1 + 2x)^{20}$. By substitution of a suitable value of x in each case, find approximations to
 - (a) 1.002²⁰,
- (b) 0.996²⁰.
- 15 Write down the first three terms in the binomial expansion of $\left(2 \frac{1}{2x^2}\right)^{10}$ in ascending powers of $\frac{1}{x}$. Hence find the value of 1.995¹⁰ correct to three significant figures. (OCR)
- 16 Two of the following expansions are correct and two are incorrect. Find the two expansions which are incorrect.

A:
$$(3+4x)^5 = 243 + 1620x + 4320x^2 + 5760x^3 + 3840x^4 + 1024x^5$$

B:
$$(1 - 2x + 3x^2)^3 = 1 + 6x - 3x^2 + 28x^3 - 9x^4 + 54x^5 - 27x^6$$

C:
$$(1-x)(1+4x)^4 = 1+15x+80x^2+160x^3-256x^5$$

D:
$$(2x + y)^2(3x + y)^3 = 108x^5 + 216x^4y + 171x^3y^2 + 67x^2y^3 + 13xy^4 + y^6$$

- 17 Find and simplify the term independent of x in the expansion of $\left(\frac{1}{2x} + x^3\right)^8$. (OCR)
- 18 Find the term independent of *x* in the expansion of $\left(2x + \frac{1}{x^2}\right)^9$.
- 19 Evaluate the term which is independent of x in the expansion of $\left(x^2 \frac{1}{2x^2}\right)^{16}$. (OCR)
- **20** Find the coefficient of x^{-12} in the expansion of $\left(x^3 \frac{1}{x}\right)^{24}$. (OCR)
- 21 Expand $(1 + 3x + 4x^2)^4$ in ascending powers of x as far as the term in x^2 . By substituting a suitable value of x, find an approximation to 1.0304^4 .
- 22 Expand and simplify $(3x + 5)^3 (3x 5)^3$. Hence solve the equation $(3x + 5)^3 - (3x - 5)^3 = 730$.

- 23 Solve the equation $(7 6x)^3 + (7 + 6x)^3 = 1736$.
- 24 (a) Show that

(i)
$$\binom{6}{4} = \binom{6}{2}$$
, (ii) $\binom{10}{3} = \binom{10}{7}$, (iii) $\binom{15}{12} = \binom{15}{3}$, (iv) $\binom{13}{6} = \binom{13}{7}$.

(b) State the possible values of x in each of the following

$$\text{(i) } \begin{pmatrix} 11 \\ 4 \end{pmatrix} = \begin{pmatrix} 11 \\ x \end{pmatrix} \qquad \text{(ii) } \begin{pmatrix} 16 \\ 3 \end{pmatrix} = \begin{pmatrix} 16 \\ x \end{pmatrix} \qquad \text{(iii) } \begin{pmatrix} 20 \\ 7 \end{pmatrix} = \begin{pmatrix} 20 \\ x \end{pmatrix} \qquad \text{(iv) } \begin{pmatrix} 45 \\ 17 \end{pmatrix} = \begin{pmatrix} 45 \\ x \end{pmatrix}$$

- (c) Use the definition $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ to prove that $\binom{n}{r} = \binom{n}{n-r}$.
- 25 Find the value of 1.0003¹⁸ correct to 15 decimal places.
- **26** (a) Expand $(2\sqrt{2} + \sqrt{3})^4$. Give your answer in the form $a + b\sqrt{6}$, where a and b are integers.
 - (b) Find the exact value of $(2\sqrt{2} + \sqrt{3})^5$.
- 27 (a) Expand and simplify $(\sqrt{7} + \sqrt{5})^4 + (\sqrt{7} \sqrt{5})^4$. By using the fact that $0 < \sqrt{7} \sqrt{5} < 1$, state the consecutive integers between which $(\sqrt{7} + \sqrt{5})^4$ lies.
 - (b) Without using a calculator, find the consecutive integers between which the value of $(\sqrt{3} + \sqrt{2})^6$ lies.
- 28* Find, in ascending powers of t, the first three terms in the expansions of
 - (a) $(1 + \alpha t)^5$, (b) $(1 \beta t)^8$.

Hence find, in terms of α and β , the coefficient of t^2 in the expansion of $(1 + \alpha t)^5 (1 - \beta t)^8$. (OCR)

29* (a) Show that

(i)
$$4 \times {6 \choose 2} = 3 \times {6 \choose 3} = 6 \times {5 \choose 2}$$
, (ii) $3 \times {7 \choose 4} = 5 \times {7 \choose 5} = 7 \times {6 \choose 4}$.

(b) State numbers a, b and c such that

(i)
$$a \times {8 \choose 5} = b \times {8 \choose 6} = c \times {7 \choose 5}$$
, (ii) $a \times {9 \choose 3} = b \times {9 \choose 4} = c \times {8 \choose 3}$.

(c) Prove that
$$(n-r) \times \binom{n}{r} = (r+1) \times \binom{n}{r+1} = n \times \binom{n-1}{r}$$
.

30* Prove that
$$\binom{n}{r-1} + 2 \binom{n}{r} + \binom{n}{r+1} = \binom{n+2}{r+1}$$
.

31* Find an expression, in terms of n, for the coefficient of x in the expansion

$$(1+4x)+(1+4x)^2+(1+4x)^3+\cdots+(1+4x)^n$$
.

32* Given that

$$a + b(1 + x)^3 + c(1 + 2x)^3 + d(1 + 3x)^3 = x^3$$

for all values of x, find the values of the constants a, b, c and d.

$$1\ 27 + 108x + 144x^2 + 64x^3$$

2 (a)
$$1 + 40x + 720x^2$$
 (b) $1 - 32x + 480x^2$

(b)
$$1 - 32x + 480x^2$$

(b)
$$\frac{875}{4}$$

4
$$2187 + 25515x + 127575x^2$$
; 2455

$$5\ 256 + 256x + 112x^2 + 28x^3$$
; 258.571

6
$$256 - 3072x + 16128x^2$$
; 253

$$7 x^6 + 3x^3 + 3 + \frac{1}{x^3}$$

$$8\ 16x^4 - 96x + \frac{216}{x^2} - \frac{216}{x^5} + \frac{81}{x^8}$$

9
$$2x^6 + 15\frac{x^2}{2} + \frac{15}{8x^2} + \frac{1}{32x^6}$$

(b) 7920 (c)
$$\frac{495}{16}$$

(c)
$$\frac{495}{16}$$

$$14\ 1 + 40x + 760x^2$$
;

15
$$1024 - \frac{2560}{x^2} + \frac{2880}{x^4}$$
; 999

$$17 \frac{7}{16}$$

19
$$\frac{6435}{128}$$

$$20 - 2024$$

$$21 \ 1 + 12x + 70x^2$$
; 1.127

22
$$270x^2 + 250$$
; $\pm \frac{4}{3}$

$$23 \pm \frac{5}{6}$$

26 (a)
$$217 + 88\sqrt{6}$$

(b)
$$698\sqrt{2} + 569\sqrt{3}$$

28 (a)
$$1 + 5\alpha t + 10\alpha^2 t^2$$
 (b) $1 - 8\beta t + 28\beta^2 t^2$ $10\alpha^2 - 40\alpha\beta + 28\beta^2$

(b)
$$1 - 8\beta t + 28\beta^2 t^2$$

29 (b) (i)
$$a = 3, b = 6, c = 8$$

(ii)
$$a = 6$$
, $b = 4$, $c = 9$

$$31 \ 2n(n+1)$$

32
$$a = -\frac{1}{6}$$
, $b = \frac{1}{2}$, $c = -\frac{1}{2}$, $d = \frac{1}{6}$