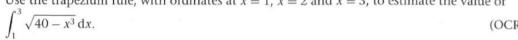
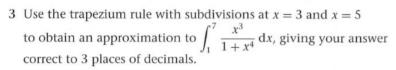
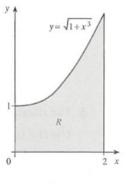
1 Use the trapezium rule, with ordinates at x = 1, x = 2 and x = 3, to estimate the value of



2 The diagram shows the region *R* bounded by the curve $y = \sqrt{1 + x^3}$, the axes and the line x = 2. Use the trapezium rule with 4 intervals to obtain an approximation for the area of R, showing your working and giving your answer to a suitable degree of accuracy.

Explain, with the aid of a sketch, whether the approximation is an overestimate or an underestimate.





(OCR)

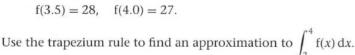
- 4 Use the trapezium rule with 5 intervals to estimate the value of $\int_0^{0.5} \sqrt{1+x^2} \, dx$, showing your working. Give your answer correct to 2 decimal places. (OCR)
- 5 The diagram shows the region R bounded by the axes, the curve $y = (x^2 + 1)^{-\frac{3}{2}}$ and the line x = 1. Use the trapezium rule, with ordinates at x = 0, $x = \frac{1}{2}$ and x = 1, to estimate the value of

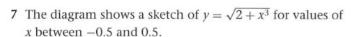
$$\int_0^1 (x^2+1)^{-\frac{3}{2}} \, \mathrm{d}x$$

giving your answer correct to 2 significant figures. (OCR)

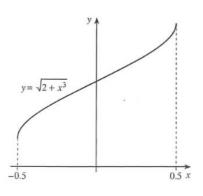
6 A certain function f is continuous and is such that

$$f(2.0) = 15$$
, $f(2.5) = 22$, $f(3.0) = 31$, $f(3.5) = 28$, $f(4.0) = 27$.





- (a) Use the trapezium rule, with ordinates at x = -0.5, x = 0 and x = 0.5 to find an approximate value for $\int^{0.5} \sqrt{2+x^3} \, \mathrm{d}x.$
- (b) Explain briefly, with reference to the diagram, why the trapezium rule can be expected to give a good approximation to the value of the integral in this



8 The speeds of an athlete on a training run were recorded at 30-second intervals:

Time after start (s)	0	30	60	90	120	150	180	210	240
Speed (m s ⁻¹)					5.4				

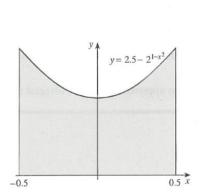
The area under a speed-time graph represents the distance travelled. Use the trapezium rule to estimate the distance covered by the athlete, correct to the nearest 10 metres.

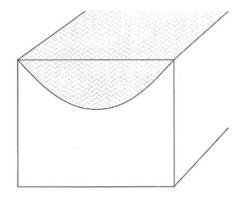
9 At a time t minutes after the start of a journey, the speed of a car travelling along a main road is $v \text{ km h}^{-1}$. The table gives values of v every minute on the 10-minute journey.

	0	1	2	2	4	5	6	7	0	0	10
ν	0	31	46	42	54	57	73	70	68	48	0

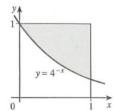
Use the trapezium rule to estimate of the length of the 10-minute journey in kilometres.

- 10 A river is 18 metres wide in a certain region and its depth, d metres, at a point x metres from one side is given by the formula $d = \frac{1}{18}\sqrt{x(18-x)(18+x)}$.
 - (a) Produce a table showing the depths (correct to 3 decimal places where necessary) at x = 0, 3, 6, 9, 12, 15 and 18.
 - (b) Use the trapezium rule to estimate the cross-sectional area of the river in this region.
 - (c) Given that, in this region, the river is flowing at a uniform speed of 100 metres per minute, estimate the number of cubic metres of water passing per minute. (OCR)
- 11 The left diagram shows the part of the curve $y = 2.5 2^{1-x^2}$ for which $-0.5 \le x \le 0.5$. The shaded region in the left diagram forms the cross-section of the straight concrete drainage channel shown in the right diagram. The units involved are metres.





- (a) Use the trapezium rule with 4 intervals to estimate the area of the shaded region.
- (b) Estimate the volume of concrete in a 20-metre length of channel.
- (c) Estimate the volume of water in the 20-metre length of channel when it is full.
- (d) Of the estimates in parts (b) and (c), which is an overestimate and which is an underestimate?
- 12 The diagram shows the curve $y = 4^{-x}$. Taking subdivisions at x = 0.25, 0.5, 0.75, find an approximation to the shaded area.



- 13 The integral $\int_{36}^{64} \sqrt{x} \, dx$ is denoted by *I*.
 - (a) Find the exact value of I.
 - (b) Use the trapezium rule with 2 intervals to find an estimate for I, giving your answer in terms of $\sqrt{2}$.

Use your two answers to deduce that $\sqrt{2} \approx \frac{149}{105}$.

14* The trapezium rule, with 2 intervals of equal width, is to be used to find an approximate value for $\int_1^2 \frac{1}{x^2} dx$. Explain, with the aid of a sketch, why the approximation will be greater than the exact value of the integral.

Calculate the approximate value and the exact value, giving each answer correct to 3 decimal places.

Another approximation to $\int_1^2 \frac{1}{x^2} dx$ is to be calculated by using two trapezia of unequal width; the ordinates are at x = 1, x = h and x = 2. Find, in terms of h, the total area, T, of these two trapezia.

Find the value of h for which T is a minimum, and find this minimum value of T, giving your answer correct to 3 decimal places.

- 15* (a) Calculate the exact value of the integral $\int_0^1 x^2 dx$.
 - (b) Find the trapezium rule approximations to this integral using 1, 2, 4 and 8 intervals. Call these A_1 , A_2 , A_4 and A_8 .
 - (c) For each of your answers in part (b), calculate the error E_i , where $E_i = \int_0^1 x^2 dx A_i$, for i = 1, 2, 4 and 8.
 - (d) Look at your results for part (c), and guess the relationship between the error E_n and the number n of intervals taken.
 - (e) How many intervals would you need to approximate to the integral to within 10^{-6} ?

- 1 10.6
- 2 3.28; overestimate
- 3 1.701
- 4 0.52
- 5 0.70
- 6 51
- 7 (a) 1.41; the overestimate between 0 and 0.5 looks to be roughly balanced by the underestimate between 0 and -0.5.
- 8 1140 m
- 9 8.15 km
- 10 (a) 0, 1.708, 2.309, 2.598, 2.582, 2.141, 0 (b) 34.0 m^2 (c) 3400 m^3
- 11 (a) 0.622 m^2 (b) 12.4 m^3 (c) 3.9 m^3 (d) (b) overestimate, (c) underestimate
- 12 0.55

13 (a)
$$\frac{592}{3}$$

(b)
$$98 + 70\sqrt{2}$$

14 0.535, 0.5; $T = \frac{3}{8}h - \frac{1}{4} + \frac{1}{2}h^{-2};$ $h = 2 \times 3^{-\frac{1}{3}}$, or 1.39; $T = \frac{3}{8} \times 3^{\frac{2}{3}} - \frac{1}{4} \approx 0.530$

$$T = \frac{3}{8} \times 3^{\frac{2}{3}} - \frac{1}{4} \approx 0.530$$

15 (a) $\frac{1}{3}$ (b) $\frac{1}{2}$, $\frac{3}{8}$, $\frac{11}{32}$, $\frac{43}{128}$ (c) $-\frac{1}{6}$, $-\frac{1}{24}$, $-\frac{1}{96}$, $-\frac{1}{384}$ (d) $E_n = -\frac{1}{6n^2}$ (e) 409, or more

(d)
$$E_n = -\frac{1}{6n^2}$$
 (e) 409, or more