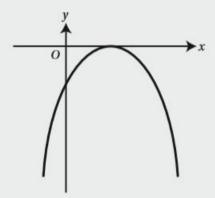


Solve simultaneously $x^2 - 2x > 0$ and $x^2 - 4x + 3 \ge 0$.

8)

9 The diagram shows the graph of the function $y = ax^2 + bx + c$.



Copy and complete this table to show whether each expression is positive, negative or zero.

Expression	Positive	Negative	Zero
а			
с			
b^2-4ac			
b			

10

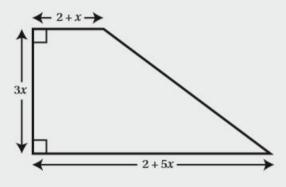
a Write $x^2 - 10x + 35$ in the form $(x - p)^2 + q$.

b Hence, or otherwise, find the maximum value of $\frac{1}{(x^2-10x+35)^3}$.

Find the exact values of k for which the equation $2kx^2 + (k+1)x + 1 = 0$ has no real roots.

12 Solve the equation: $x^{\frac{1}{4}} + 2x^{-\frac{1}{4}} = 3$.

- **13** Solve the equation $\frac{49}{(5x+2)^2} \frac{14}{5x+2} + 1 = 0.$
- **14** a Express $2x^2 6x + 9$ in the form $p(x+q)^2 + r$.
 - **b** State the coordinates of the vertex of the curve $y=2x^2-6x+9$.
 - c State the number of real roots of the equation $2x^2 6x + 9 = 0$.
- A lawn is to be made in the shape shown. The units are metres.



- i The perimeter of the lawn is *P* m. Find *P* in terms of *x*.
- ii Show that the area, $A m^2$, of the lawn is given by $A = 9x^2 + 6x$.

The perimeter of the lawn must be at least 39 m and the area of the lawn must be less than 99 m^2 .

iii By writing down and solving appropriate inequalities, determine the set of possible values of *x*.

© OCR, AS GCE Mathematics, Paper 4721, January 2010

Alexia and Michaela were both trying to solve a quadratic equation of the form $x^2 + bx + c = 0$.

Unfortunately Alexia misread the value of *b* and found that the solutions were 6 and 1.

Michaela misread the value of *c* and found that the solutions were 4 and 1.

What were the correct solutions?

- **17** Find the values of *k* for which the line y = 2x k is tangent to the curve with equation $x^2 + y^2 = 5$.
- **18** Let α and β denote the roots of the quadratic equation $x^2 kx + (k 1) = 0$.
 - **a** Express α and β in terms of the real parameter *k*.
 - **b** Given that $\alpha^2 + \beta^2 = 17$, find the possible values of *k*.
- 19 Let $q(x) = kx^2 + (k-2)x 2$. Show that the equation q(x) = 0 has real roots for all values of *k*.
- 20 Two cars are travelling along two straight roads that are perpendicular to each other and meet at the point *O*, as shown in the diagram. The first car starts 50 km west of *O* and travels east at the constant speed of 20 km/h. At the same time, the second car starts 30 km south of *O* and travels north at the constant speed of 15 km/h.



- a Show that at time *t* (hours) the distance *d* (km) between the two cars satisfies $d^2 = 625t^2 - 2900t + 3400$.
- b Hence find the closest distance between the two cars.

1
$$x=k+2$$

2 $x=1, 6$
3 $x=\pm 1, \pm 2$
4 a Minimum b $a=3, b=7$
5 $a=-3, b=2, c=48$
6 a $p=1, q=4$ b $x=1.5$
7 a $16-4k^2$ b $k=\pm 2 \text{ or } -2$
8 $x \ge 3 \text{ or } x < 0$
9 a, c negative, b positive, $b^2 - 4ac = 0$
10 a $(x-5)^2 + 10$ b $\frac{1}{1000}$

11
$$3-2\sqrt{2} < k < 3+2\sqrt{2}$$

12 $x = 1, 16$
13 $x = 1$
14 a $2\left(x - \frac{3}{2}\right)^2 + \frac{9}{2}$ b $\left(\frac{3}{2}, \frac{9}{2}\right)$ c Zero
15 a $P = 14x + 4$ b Proof c $\frac{5}{2} \le x < 3$
16 $x = 3, 2$
17 $k = \pm 5$
18 a $k - 1, 1$ b $k = -3, 5$
19 Proof
20 a Proof b 6 km