Mixed practice 3

In this exercise, you must show detailed reasoning.
1 A quadratic function passes through the points $(k, 0)$ and $(k+4,0)$. Find the x-coordinate of the vertex of the graph of the function.
(2) Solve algebraically:

$$
(2 x-3)(x-5)=(x-3)^{2}
$$

(3) Solve $x^{4}-5 x^{2}+4=0$.
(4) The quadratic function $y=(x-a)^{2}+b$ has a turning point at $(3,7)$.
a State whether this turning point is a maximum or a minimum point.
b State the values of a and b.
(5) The quadratic function $y=a(x-b)^{2}+c$ passes through the points $(-2,0)$ and $(6,0)$. Its maximum y value is 48 . Find the values of a, b and c.
6 The diagram represents the graph of the function $\mathrm{f}(x)=(x+p)(x-q)$.

a Write down the values of p and q if they are both positive.
b The function has a minimum value at the point C. Find the x-coordinate of C.
(랑 7 i Find the discriminant of $k x^{2}-4 x+k$ in terms of k.
ii The quadratic equation $k x^{2}-4 x+k=0$ has equal roots. Find the possible values of k.
© OCR, AS GCE Mathematics, Paper 4721, June 2007
8 Solve simultaneously $x^{2}-2 x>0$ and $x^{2}-4 x+3 \geqslant 0$.

9 The diagram shows the graph of the function $y=a x^{2}+b x+c$.

Copy and complete this table to show whether each expression is positive, negative or zero.

Expression	Positive	Negative	Zero
a			
c			
$b^{2}-4 a c$			
b			

10 a Write $x^{2}-10 x+35$ in the form $(x-p)^{2}+q$.
b Hence, or otherwise, find the maximum value of $\frac{1}{\left(x^{2}-10 x+35\right)^{3}}$.
11 Find the exact values of k for which the equation $2 k x^{2}+$ $(k+1) x+1=0$ has no real roots.
(12) Solve the equation: $x^{\frac{1}{4}}+2 x^{-\frac{1}{6}}=3$.
(13) Solve the equation $\frac{49}{(5 x+2)^{2}}-\frac{14}{5 x+2}+1=0$.
(14) a Express $2 x^{2}-6 x+9$ in the form $p(x+q)^{2}+r$.
b State the coordinates of the vertex of the curve $y=2 x^{2}-6 x+9$.
c State the number of real roots of the equation $2 x^{2}-6 x+9=0$.
(라) 15 A lawn is to be made in the shape shown. The units are metres.

i The perimeter of the lawn is $P \mathrm{~m}$. Find P in terms of x.
ii Show that the area, $A \mathrm{~m}^{2}$, of the lawn is given by $A=9 x^{2}+6 x$.

The perimeter of the lawn must be at least 39 m and the area of the lawn must be less than $99 \mathrm{~m}^{2}$.
iii By writing down and solving appropriate inequalities, determine the set of possible values of x.
© OCR, AS GCE Mathematics, Paper 4721, January 2010
(16) Alexia and Michaela were both trying to solve a quadratic equation of the form $x^{2}+b x+c=0$.

Unfortunately Alexia misread the value of b and found that the solutions were 6 and 1.

Michaela misread the value of c and found that the solutions were 4 and 1.

What were the correct solutions?
17 Find the values of k for which the line $y=2 x-k$ is tangent to the curve with equation $x^{2}+y^{2}=5$.

18 Let α and β denote the roots of the quadratic equation $x^{2}-k x+(k-1)=0$.
a Express α and β in terms of the real parameter k.
b Given that $\alpha^{2}+\beta^{2}=17$, find the possible values of k.
(19) Let $\mathrm{q}(x)=k x^{2}+(k-2) x-2$. Show that the equation $\mathrm{q}(x)=0$ has real roots for all values of k.

20 Two cars are travelling along two straight roads that are perpendicular to each other and meet at the point O, as shown in the diagram. The first car starts 50 km west of O and travels east at the constant speed of $20 \mathrm{~km} / \mathrm{h}$. At the same time, the second car starts 30 km south of O and travels north at the constant speed of $15 \mathrm{~km} / \mathrm{h}$.

a Show that at time t (hours) the distance $d(\mathrm{~km})$ between the two cars satisfies $d^{2}=625 t^{2}-2900 t+3400$.
b Hence find the closest distance between the two cars.
$1 x=k+2$
$2 x=1,6$
$3 x= \pm 1, \pm 2$
4 a Minimum
b $a=3, b=7$
$5 a=-3, b=2, c=48$
6 a $p=1, q=4$
b $x=1.5$
7 a $16-4 k^{2}$
b $k= \pm 2$ or -2
$8 x \geqslant 3$ or $x<0$
$9 a, c$ negative, b positive, $b^{2}-4 a c=0$
10 a $(x-5)^{2}+10$
b $\frac{1}{1000}$
$113-2 \sqrt{2}<k<3+2 \sqrt{2}$
$12 x=1,16$
$13 x=1$
14 a $2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2} \quad$ b $\left(\frac{3}{2}, \frac{9}{2}\right)$ c Zero
15 a $P=14 x+4$
b Proof
c $\frac{5}{2} \leqslant x<3$
$16 x=3,2$
$17 k= \pm 5$
18 a $k-1,1$
b $k=-3,5$

19 Proof
20 a Proof
b 6 km

