Exponentials and logarithms (answers at the end)

1 Solve each of the following equations to find x in terms of a where a > 0 and $a \neq 100$. The logarithms are to base 10.

(a)
$$a^{x} = 10^{2x+1}$$

(b) $2\log(2x) = 1 + \log a$ (OCR, adapted)

- 2 Solve the equation $3^{2x} = 4^{2-x}$, giving your answer to three significant figures. (OCR)
- **3** Find *y* in terms of *x* for each of the following equations.
 - (a) $3^{y} = 5^{x}$, expressing your answer in the form y = cx and giving the exact value of the constant *c*.
 - (b) $\ln(x^4) \ln(x^2y) + \ln(y^2) = 0$, expressing your answer in the form $y = kx^n$ and giving the values of the constants *k* and *n*.
- 4 Find the root of the equation $10^{2-2x} = 2 \times 10^{-x}$ giving your answer exactly in terms of logarithms. (OCR, adapted)
- 5 Given the simultaneous equations

$$2^{x} = 3^{y},$$

$$x + y = 1,$$

show that $x = \frac{\log 3}{\log 6}.$ (OCR, adapted)

- 6 Express $\log (2\sqrt{10}) \frac{1}{3} \log 0.8 \log (\frac{10}{3})$ in the form $c + \log d$ where c and d are rational numbers and the logarithms are to base 10. (OCR, adapted)
- 7 An athlete plans a training schedule which involves running 20 km in the first week of training; in each subsequent week the distance is to be increased by 10% over the previous week. Write down an expression for the distance to be covered in the *n*th week according to this schedule, and find in which week the athlete would first cover more than 100 km.
- 8 Prove that $\log\left(\frac{p}{q}\right) + \log\left(\frac{q}{r}\right) + \log\left(\frac{r}{p}\right) = 0.$
- 9 If *a*, *b* and *c* are positive numbers in geometric progression, show that log *a*, log *b* and log *c* are in arithmetic progression.
- **10** Express $\log_2(x + 2) \log_2 x$ as a single logarithm. Hence solve the equation $\log_2(x + 2) - \log_2 x = 3$.
- 11 Solve the inequality $8^x > 10^{30}$.
- 12 (a) A curve has equation $y = 12 \times 4^x$. Find the value of x for which y = 20000.
 - (b) The graph of $y = 12 \times 4^x$ is translated by one unit parallel to the positive *x*-axis. Given that the new graph has equation $y = cd^x$, write down the values of *c* and *d*.
 - (c) The graph of $y = 12 \times 4^x$ is transformed by a stretch of scale factor 2 parallel to the *x*-axis followed by a stretch of scale factor $\frac{1}{3}$ parallel to the *y*-axis. Given that the new graph has equation $y = gh^x$, find the values of *g* and *h*. (MEI)

13 Given that
$$\log_e p = 2600$$
, find the values of
(a) $\log_e(pe^{10})$, (b) $\log_e\left(\frac{1}{\sqrt{p}}\right)$. (OCR, adapted)

- 14 (a) Solve the equation $\log_e(\frac{1}{2}x+1) = 8$, giving your answer in terms of e.
 - (b) Solve the equation $e^{\frac{1}{2}x+1} = 8$, giving your answer in terms of $\log_e 2$. (OCR, adapted)

(OCR)

- 15* If $\log_r p = q$ and $\log_q r = p$ express p in terms of q and r, and r in terms of p and q. Hence prove that $\log_q p = pq$.
- **16*** If $\log_b a = p$, $\log_c b = q$ and $\log_a c = r$, where *a*, *b* and *c* are positive numbers, express *a* in terms of *b* and *p*, *b* in terms of *c* and *q*, and *c* in terms of *a* and *r*. Deduce that $a^{pqr} = a$, and hence prove that $\log_b a \times \log_c b \times \log_a c = 1$.

1 (a)
$$\frac{1}{\log a - 2}$$
 (b) $\sqrt{\frac{5a}{2}}$
2 0.774
3 (a) $y = \frac{\log 5}{\log 3}x$; $c = \frac{\log 5}{\log 3}$
(b) $y = x^{-2}$; $k = 1$, $n = -2$
4 $2 - \log 2$
6 $\log 3 - \frac{1}{6}$
7 $20 \times 1.1^{n-1}$; 18
10 $\log_2 \frac{x+2}{x}$, $\frac{2}{7}$
11 $x > 33.2$
12 (a) 5.35 (b) 3, 4 (c) 4, 2
13 (a) 2610 (b) -1300
14 (a) $x = 2(e^8 - 1)$ (b) $x = 6\log_e 2 - 2$
15 $p = r^q$, $r = q^p$
16 $a = b^p$, $b = c^q$, $c = a^r$