1.	Solve	2.		
	(a)	4x - 3 = 17		
	(1.)	10. 2. 0	[2]	
	(b)	19 = 2x + 8		
			[2]	
2.	(a)	Simplify.		
		(i) $2b+3b$		
			[1]	
		(ii) $4c + 5d + c - 3d$		
			[2]	
	(b)	Use the formula $P = 3x + 4y$ to find P when $x = 5$ and y	= 2.	
			[2]	
3.	(a)	Multiply out.	[=]	
	,	4(x+2)		
			[1]	
	(b)	Factorise.		
		6x + 15		
			[1]	
4.	Solve	2.		
	(a)	$11 = \frac{x}{2}$		
				[1]
	(b)	4x - 1 = 19		

Northgate High School

.....

5. (a) Solve this inequality.

$$\frac{3x+2}{5} < 4$$

.....[3]

(b) Represent the solution to the inequality $\frac{3x+2}{5}$ < 4 on the number line below.

[1]

6. The angles of a quadrilateral are x, 3x, $2x + 20^{\circ}$ and $x - 10^{\circ}$.

(a) The sum of the angles of a quadrilateral is 360°.

Use this information to write down an equation in x.

.....[1]

(b) Solve your equation to find *x*. Hence find the size of the largest angle in the quadrilateral.

x = °

largest angle $^{\circ}$ [3]

7. Not to scale

The perimeter of this rectangle is equal to the perimeter of this triangle.

Find an expression for the missing length in the triangle.

.....[3]

8.	(a)	Simplify.	
			2a - 6c + 5a + c

(b) Multiply out.

(c) Factorise.

5(x - 4)

[2]	
[1]	

	$x^2 + 3x$	
(1)		[1]
(d)	Rearrange $y = 5x - 2$ to make x the subject.	

.....[2]

9. The perimeter of this rectangle is 86 cm.

Form an equation in x and solve it to find x.

.....

10. (a) Solve.

$$2(x+7) = 6x$$

.....[3]

(b) Solve this inequality.

$$2x + 6 < 0$$

Represent your solution on the number line.

[3]

11. Rearrange this formula to make x the subject.

$$y = 3x^2 + 4$$

.....[3]

12. (a) Factorise.

$$5x - 3x^2$$

.....[2]

(b) Solve.

(i)
$$3(2x+5)=9$$

....[3]

(ii)
$$6x - 10 = 2x + 8$$

.....[3]

13. (a) Solve.

6x >	> X +	- 10
------	-------	------

	 [2]
•••••	 ·····L—」

(b) Factorise and solve this equation.

$$x^2 - 7x + 6 = 0$$

14. Rearrange x = 4y + 1 to make y the subject.

15. (a) Solve.

(i)
$$\frac{x}{5} = 15$$

(ii)
$$3x + 13 = 2(x + 9)$$

(b) Rearrange this formula to make b the subject.

$$P = 2b + 2h$$

16.	Write	e down the in	tegers, n , which satisfy this inequality.	
		$4 \le 2n < 11$		
17.	(a)	Solve.	3(2x+7) = 15	[3]
	(b)	Expand.	(x+5)(x-3)	[3]
18.	(a)	Factorise and	and solve. $x^2 - 5x - 14 = 0$	[2]
	(b)	Solve algeb	praically. $5x - 2y = 19$ $6x + y = 16$	
				<i>x</i> =

19. Solve.

$$3x^2 - 8x + 2 = 0$$

Give your answers correct to 2 decimal places.

				[3]
20.	The o	expression $x^2 - 4x - 21$ can be w	ritten in the form $(x -$	$a)^2-b.$
	(a)	Find the values of a and b .		
				<i>a</i> =
				<i>b</i> =[3]
	(b)	Hence find the minimum value and the value of <i>x</i> at which it o		
			minimum value.	when $x =$
21.	(a)	Multiply out and simplify.		
			(2x-1)(3x+2)	
				[3]
	(b)	(i) Factorise.		
			$x^2 - 7x + 12$	
				[2]

.....[3]

(ii) Hence simplify.

I
I
1
I
]
]

(c) Using your answer to part (a), or otherwise, solve the equation $x^2 - 6x + 7 = 0$. Leave your answers in the form $x = c \pm \sqrt{d}$.

.....[2]

.....[1]

24. (a) Expand and simplify.

$$(2x + 3)^2$$

.....

[3]

(b) All lengths in these diagrams are in centimetres.

(i) The area of the square is 19 cm^2 more than the area of the rectangle. Show that

$$x^2 - 6x + 5 = 0.$$

•••••	• • • • • • • • • • • • • • • • • • • •	 •••••	• • • • • • • • • • • • • • • • • • • •

.....

(ii) Solve by factorising.

$$x^2 - 6x + 5 = 0$$

.....[3]

(iii) Write down the two possible lengths of the sides of the square.

.....cm

.....cm[1]