

- ii Hence show that $(2x+5)^4 (2x-5)^4$ can be written as $320x^3 + kx$, where the value of the constant k is to be stated.
- iii Verify that x = 2 is a root of the equation $(2x + 5)^4 (2x 5)^4 = 3680x 800$, and find the other possible values of *x*.

```
© OCR, AS GCE Mathematics, Paper 4722, January 2008
```

- **12** The expansion of $(2x + ay)^n$ contains the term $20x^3y^2$.
 - **a** Write down the value of *n*.
 - **b** Find the value of *a* where *a* is positive.
 - **c** Find the first four terms in ascending powers of *y*.
 - **d** Hence or otherwise, find 20.05^{*n*} correct to the nearest hundred. You do not need to justify the accuracy of your approximation.
- **13** Find the coefficient of x^2 in the expansion of $\left(2x + \frac{1}{\sqrt{x}}\right)^2$.
- $(1+ax)^n = 1 + 10x + 40x^2 + \dots$

Find the values of *a* and *n*.

- **15** a Sketch the graph of $y = (x+2)^3$.
 - **b** Find the binomial expansion of $(x+2)^3$.
 - c Find the exact value of 2.01^3 .
 - **d** Solve the equation $x^3 + 6x^2 + 12x + 16 = 0$.
- 16 In the binomial expansion of $(k + ax)^4$ the coefficient of x^2 is 24.
 - **i** Given that *a* and *k* are both positive, show that ak = 2.
 - ii Given also that the coefficient of x in the expansion is 128, find the values of a and k.
 - **iii** Hence find the coefficient of x^3 in the expansion.

