Mixed practice 6

- 1 Find the radius of the circle $x^2 8x + y^2 + 6y = 144$.
- 2 Line l_1 has equation 3x 2y + 7 = 0.
 - **a** Point A(2k, 2k+1) lies on l_1 . Find the value of k.
 - **b** Point *B* has coordinates (-2, p). Find the value of *p* so that *AB* is perpendicular to l_1 .
 - **c** Line l_2 is parallel to l_1 and passes through *B*. Find the equation of l_2 in the form ax + by + c = 0 where *a*, *b* and *c* are integers.
 - d l₂ crosses the *x*-axis at the point *C*. Find the coordinates of *C*.
- 3 Circle C has equation $x^2 2x + y^2 10y 19 = 0$.
 - a Find the coordinates of the centre, *P*, of the circle.
 - **b** Show that point A(7, 2) lies on the circle.

Point *M* has coordinates (1, -1). Line *l* is perpendicular to *PA* and passes through *M*. It cuts *PA* at the point *S*.

c Find the coordinates of *S*.

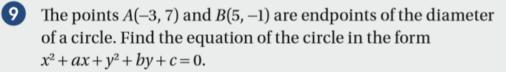
(4)

- A circle has equation $x^2 + y^2 + 6x 4y 4 = 0$.
- i Find the centre and radius of the circle.
- ii Find the coordinates of the points where the circle meets the line with equation y = 3x + 4.

© OCR, AS GCE Mathematics, Paper 4721, January 2010

- 5 y = -3x + 5 is tangent to the circle *C* at the point (4, -7). The centre of *C* is at the point (k 4, k + 3). Find the value of *k*.
- 6 Consider the points A(4, 3), B(3, -2) and C(9, 2).
 - **a** Show that *BAC* is a right angle.
 - **b** Hence find the equation of the circle through *A*, *B* and *C*.
 - **c** Find the equation of the tangent to the circle at *B*. Give your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integers.
- 7 A circle has centre (3, 0) and radius 5. The line y = 2x + k intersects the circle in two points. Find the set of possible values of k, giving your answers in surd form.
- 8 A circle has centre *C*(7, 12) and passes through the point *D*(4, 10). The tangent to the circle at *D* cuts the coordinate axes at points *A* and *B*. Find the area of these triangles:

a AOB b ABC



Find the exact values of *k* for which the line y = kx + 3 is tangent to the circle with centre (6, 3) and radius 2.

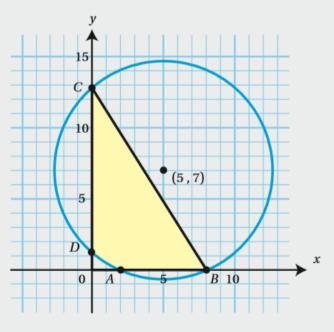
 $\mathbf{10}$

i Find the equation of the circle with radius 10 and centre (2, 1), giving your answer in the form $x^2 + y^2 + ax + by + c = 0$.

- ii The circle passes through the point (5, *k*) where k > 0. Find the value of *k* in the form $p + \sqrt{q}$.
- iii Determine, showing all working, whether the point (-3, 9) lies inside or outside the circle.
- iv Find an equation of the tangent to the circle at the point (8, 9).

© OCR, AS GCE Mathematics, Paper 4721, June 2008

- Find the shortest distance from the point (-3, 2) to the line with equation 3x + 2y = 19. Give your answer in exact form.
- Show that each of the circles $x^2 6x + y^2 + 10y + 18 = 0$ and $x^2 14x + y^2 6y + 49 = 0$ lies entirely outside the other one.
- A circle has centre (5, 7). It crosses the *x*-axis at points A(2, 0) and B(p, 0), where p > 2.



- **a** Find the value of *p* and write down the equation of the circle.
- **b** The circle crosses the *y*-axis at points *C* and *D*. Find the area of the quadrilateral *ABCD*.

Mixed practice 6

1
$$k=13$$

2 a $k=-\frac{5}{2}$ b $p=6$
c $3x-2y-6=0$ d $(2,0)$
3 a $(1,5)$ b proof c $(3.4, 3.8)$
4 a Centre (-3, 2), radius $\sqrt{17}$
b $\left(\frac{1}{5}, \frac{23}{5}\right)$ and (-2, -2)

5
$$k=-19$$

6 a Proof b $(x-6)^2+y^2=13$
c $3x+2y-5=0$
7 $-6-5\sqrt{5} < k < -6+5\sqrt{5}$
8 a $\frac{256}{3}$ b $\frac{104}{3}$
9 $x^2-2x+y^2-6y-22=0$
10 $k=\pm\sqrt{\frac{1}{8}}=\pm\frac{\sqrt{2}}{4}$
11 a $x^2+y^2-4x-2y-95=0$ b $k=1+\sqrt{91}$
c Inside d $y=-\frac{3}{4}x+15$
12 $\frac{24\sqrt{13}}{13}$
13 Proof; $\sqrt{80} > 7$
14 a $p=8$; $(x-5)^2+(y-7)^2=58$ b $21+5\sqrt{33}$