Mixed practice 6

(1) Find the radius of the circle $x^{2}-8 x+y^{2}+6 y=144$.
(2) Line l_{1} has equation $3 x-2 y+7=0$.
a Point $A(2 k, 2 k+1)$ lies on l_{1}. Find the value of k.
b Point B has coordinates $(-2, p)$. Find the value of p so that $A B$ is perpendicular to l_{1}.
c Line l_{2} is parallel to l_{1} and passes through B. Find the equation of l_{2} in the form $a x+b y+c=0$ where a, b and c are integers.
d l_{2} crosses the x-axis at the point C. Find the coordinates of C.
(3) Circle C has equation $x^{2}-2 x+y^{2}-10 y-19=0$.
a Find the coordinates of the centre, P, of the circle.
b Show that point $A(7,2)$ lies on the circle.
Point M has coordinates $(1,-1)$. Line l is perpendicular to $P A$ and passes through M. It cuts
$P A$ at the point S.
c Find the coordinates of S.
(4) A circle has equation $x^{2}+y^{2}+6 x-4 y-4=0$.
i Find the centre and radius of the circle.
ii Find the coordinates of the points where the circle meets the line with equation $y=3 x+4$.
© OCR, AS GCE Mathematics, Paper 4721, January 2010
(5) $y=-3 x+5$ is tangent to the circle C at the point $(4,-7)$. The centre of C is at the point $(k-4, k+3)$. Find the value of k.
6 Consider the points $A(4,3), B(3,-2)$ and $C(9,2)$.
a Show that $B A C$ is a right angle.
b Hence find the equation of the circle through A, B and C.
c Find the equation of the tangent to the circle at B. Give your answer in the form $a x+b y+c=0$ where a, b and c are integers.
(7) A circle has centre $(3,0)$ and radius 5 . The line $y=2 x+k$ intersects the circle in two points. Find the set of possible values of k, giving your answers in surd form.
8 A circle has centre $C(7,12)$ and passes through the point $D(4,10)$. The tangent to the circle at D cuts the coordinate axes at points A and B. Find the area of these triangles:
a $A O B$
b $A B C$

9 The points $A(-3,7)$ and $B(5,-1)$ are endpoints of the diameter of a circle. Find the equation of the circle in the form $x^{2}+a x+y^{2}+b y+c=0$.
10 Find the exact values of k for which the line $y=k x+3$ is tangent to the circle with centre $(6,3)$ and radius 2 .
11 i Find the equation of the circle with radius 10 and centre $(2,1)$, giving your answer in the form $x^{2}+y^{2}+a x+b y+c=0$.
ii The circle passes through the point $(5, k)$ where $k>0$. Find the value of k in the form $p+\sqrt{q}$.
iii Determine, showing all working, whether the point $(-3,9)$ lies inside or outside the circle.
iv Find an equation of the tangent to the circle at the point $(8,9)$.
© OCR, AS GCE Mathematics, Paper 4721, June 2008
12 Find the shortest distance from the point $(-3,2)$ to the line with equation $3 x+2 y=19$.
Give your answer in exact form.
13 Show that each of the circles $x^{2}-6 x+y^{2}+10 y+18=0$ and x^{2} $-14 x+y^{2}-6 y+49=0$ lies entirely outside the other one.
14 A circle has centre $(5,7)$. It crosses the x-axis at points $A(2,0)$ and $B(p, 0)$, where $p>2$.

a Find the value of p and write down the equation of the circle.
b The circle crosses the y-axis at points C and D. Find the area of the quadrilateral $A B C D$.

Mixed practice 6
$1 k=13$
2 a $k=-\frac{5}{2} \quad$ b $p=6$
c $3 x-2 y-6=0$
d $(2,0)$
3 a $(1,5)$
b proof
c $(3.4,3.8)$
4 a Centre $(-3,2)$, radius $\sqrt{17}$
b $\left(\frac{1}{5}, \frac{23}{5}\right)$ and $(-2,-2)$
$5 k=-19$
6 a Proof
b $(x-6)^{2}+y^{2}=13$
c $3 x+2 y-5=0$
$7-6-5 \sqrt{5}<k<-6+5 \sqrt{5}$
8 a $\frac{256}{3}$
b $\frac{104}{3}$
$9 x^{2}-2 x+y^{2}-6 y-22=0$
$10 k= \pm \sqrt{\frac{1}{8}}= \pm \frac{\sqrt{2}}{4}$
11 a $x^{2}+y^{2}-4 x-2 y-95=0$
b $k=1+\sqrt{91}$
c Inside
d $y=-\frac{3}{4} x+15$
$12 \frac{24 \sqrt{13}}{13}$
13 Proof; $\sqrt{80}>7$
14a $p=8 ;(x-5)^{2}+(y-7)^{2}=58$ b $21+5 \sqrt{33}$

