	Mix	ed practice 7	
		his exercise, you must show detailed reasoning.	
	-		
	2	If $8^x = 16$, then x equals:	
		a $\log_{16} 8$ b $\sqrt[8]{16}$ c $\frac{16}{8}$ d $\frac{4}{3}$	
	3	Given that $a = \log x$, $b = \log y$ and $c = \log z$ (with all logs being to the base 10), express the following in terms of <i>a</i> , <i>b</i> , <i>c</i> and integers:	
		a $\log \frac{x^2 \sqrt{y}}{z}$ b $\log \sqrt{0.1x}$ c $\log_{100} \left(\frac{y}{z}\right)$	
	4	Solve the equation $3e^{2x+1} = 17$, giving your answer to three 3 s.f.	
	6	Solve the equation $4 \log_a x = \log_a 81$.	
	6	Given that $\log_x 4 = 9$, find the value of <i>x</i> correct to 3 s.f.	
	0	If $\log_a y + \log_a 7 = 4$, express y in terms of a.	
	8	The curve $y = 3^{2x-1}$ intersects the line $y = 4$ at the point <i>P</i> . Find the exact value of the <i>x</i> -coordinate of <i>P</i> .	
	9	Solve the simultaneous equations:	
		$\ln x + \ln y^2 = 8$	
		$\ln x^2 + \ln y = 6$	
	10	Given that $4 \log_b x - \log_b 9 = 2$, express <i>b</i> in terms of <i>x</i> .	
	1	Given that $\log_5 y = 8$, find the value of $\log_5 (125y)$.	
	12	If $y = \ln x - \ln (x + 2) + \ln (4 - x^2)$, express <i>x</i> in terms of <i>y</i> .	
	13	Solve, correct to 3 s.f., $3^{2x} - 3^{x+1} - 10 = 0$.	
	14	Solve the equation $\log(x^2 + 1) = 1 + 2 \log x$.	
•	Ð	Use logarithms to solve the equation $3^{2x+1} = 5^{200}$, giving the value of <i>x</i> correct to 3 significant figures.	
		© OCR, AS GCE Mathematics, Paper 4722, June 2007	
®	16	a Given that $\log_a x = p$ and $\log_a y = q$, express the following in terms of <i>p</i> and <i>q</i> .	
		i $\log_a(xy)$ ii $\log_a\left(\frac{a^2x^3}{y}\right)$	
		b i Express $\log_{10} (x^2 - 10) - \log_{10} x$ as a single logarithm.	
		ii Hence solve the equation $\log_{10} (x^2 - 10) - \log_{10} x = 2 \log_{10} 3$.	
		© OCR, AS GCE Mathematics, Paper 4722, January 2009	
	D	Find the exact value of x satisfying the equation $2^{3x-2} \times 3^{2x-3} =$	
		36^{x-1} giving your answer in simplified form $\frac{\ln p}{\ln q}$ where $p, q \in \mathbb{Z}$.	
	18	Solve the equation $5 \times 4^{x-1} = \frac{1}{3^{2x}}$ giving your answer in the form	
		$x = \frac{\ln p}{\ln q}$ where p and q are rational numbers.	
	19	Find the exact solutions to $e^x + e^{-x} = 4$.	
	20	Find the value of x for which $(\log_3 x)^2 = \log_3 x^3 - 2$.	

Mixed practice 7
1
$$x = \pm 24$$

2 D
3 a $2a + \frac{b}{2} - c$ b $\frac{a-1}{2}$ c $\frac{b-c}{2}$
4 $x = 0.367$
5 $x = 3$
6 $x = 1.17$
7 $y = \frac{a^4}{7}$
8 $x = \frac{\log_3 4 + 1}{2}$
9 $x = e^{\frac{4}{3}} = 3.79, y = e^{\frac{10}{3}} = 28.0$
10 $b = \frac{x^2}{3}$
11 11
12 $x = 1 \pm \sqrt{1 - e^y}$
13 $x = 1.46$
14 $x = \frac{1}{3}$
15 $x = 146$
16 a i $p + q$ ii $2 + 3p - q$
b i $\log_{10}\left(\frac{x^2 - 10}{x}\right)$ ii $x = 10$
17 $x = \frac{\ln 3}{\ln 2}$
Solution 2 is correct.
18 $x = \frac{\ln\left(\frac{4}{5}\right)}{\ln 36}$
19 $x = \ln(2 \pm \sqrt{3})$
20 $x = 3, 9$