Intermediate Check In - 6.01 Algebraic expressions

1. Express the following as a simplified single expression.

$$
(2 x+3)-(x-2)
$$

2. Simplify the following algebraic expression.

$$
x^{2} \times 2 x^{5} \times x
$$

3. Multiply out and simplify the following expression.

$$
(x+2)(3 x-1)
$$

4. Factorise the following expression.

$$
x^{2}-7 x+10
$$

5. Express the following as a simplified single expression.

$$
4 x^{4} y^{2} \div 2 x^{3} y^{2}
$$

6. Explain why $x^{2}-6 x+9 \equiv(x-3)^{2}$ is an identity but $x^{2}-5 x+10=(x-3)^{2}$ is an equation.
7. The area of a rectangle is given as $x^{2}+5 x+4$. Show that the perimeter of the rectangle is $2(2 x+5)$.
8. Show that $a \%$ of b is the same as $b \%$ of a.
9. The diagram on the right shows a square with sides of length $2 x$. Write down an expression for the area of the triangle marked on one corner.

10. The area of a chessboard is given as $64 x^{2}-256 x+256 \mathrm{~cm}^{2}$. Find an expression for the length of a single square on the board.

Extension

$1,1,2,3,5 \ldots$ and $2,5,7,12,19 \ldots$ are examples of Fibonacci sequences. Show that the sum of the first ten terms of any Fibonacci sequence is always $11(5 a+8 b)$ where a and b are the first 2 terms.

Answers

1. $x+5$
2. $2 x^{8}$
3. $3 x^{2}+5 x-2$
4. $(x-2)(x-5)$
5. $2 x$
6. $x^{2}-6 x+9 \equiv(x-3)^{2}$ is an identity because it is true for all values of x, but $x^{2}-5 x+10=(x-3)^{2}$ is an equation because it is only true when $x=-1$.
7. $x^{2}+5 x+4=(x+4)(x+1)$ so the length is $x+4$ and the width is $x+1$, giving a perimeter of $4 \mathrm{x}+10=2(2 x+5)$.
8. $\frac{a}{100} \times b=\frac{a b}{100}=\frac{b}{100} \times a$
9. Area $=\frac{1}{2}(2 x-2)(2 x-2)=2 x^{2}-4 x+2$
10. Factorising by the number of squares gives $64\left(x^{2}-4 x+4\right)$, then factorising again to find the length of the side of each square gives $x^{2}-4 x+4=(x-2)(x-2)$. Side length is $x-2 \mathrm{~cm}$.

Extension

$a, b, a+b, a+2 b, 2 a+3 b, 3 a+5 b, 5 a+8 b, 8 a+13 b, 13 a+21 b, 21 a+34 b$.
Sum of the first ten terms is $55 a+88 b=11(5 a+8 b)$.

[^0][^1]| Assessment
 Objective | Qu. | Topic | R | A | G |
| :---: | :---: | :--- | :---: | :---: | :---: |
| AO1 | 1 | Simplify an algebraic expression by collecting like terms | | | |
| AO1 | 2 | Simplify algebraic products using the laws of indices | | | |
| AO1 | 3 | Expand and simplify a binomial product | | | |
| AO1 | 4 | Factorise a quadratic expression into brackets | | | |
| AO1 | 5 | Simplify algebraic quotients using the laws of indices | | | |
| AO2 | 6 | Understand the difference between an equation and an
 identity | | | |
| AO2 | 7 | Factorise and collect like terms to derive a length from an
 area | | | |
| AO2 | 8 | Use algebra to generalise a mathematical concept | | | |
| AO3 | 9 | Use algebra to solve a geometric problem | | | |
| AO3 | 10 | Use algebra to solve a contextual geometric problem | | | |

Assessment Objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression by collecting like terms			
AO1	2	Simplify algebraic products using the laws of indices			
AO1	3	Expand and simplify a binomial product			
AO1	4	Factorise a quadratic expression into brackets			
AO1	5	Simplify algebraic quotients using the laws of indices			
AO2	6	Understand the difference between an equation and an identity			
AO2	7	Factorise and collect like terms to derive a length from an area			
AO2	8	Use algebra to generalise a mathematical concept			
AO3	9	Use algebra to solve a geometric problem			
AO3	10	Use algebra to solve a contextual geometric problem			

Assessment Objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression by collecting like terms			
AO1	2	Simplify algebraic products using the laws of indices			
AO1	3	Expand and simplify a binomial product			
AO1	4	Factorise a quadratic expression into brackets			
AO1	5	Simplify algebraic quotients using the laws of indices			
AO2	6	Understand the difference between an equation and an identity			
AO2	7	Factorise and collect like terms to derive a length from an area			
AO2	8	Use algebra to generalise a mathematical concept			
AO3	9	Use algebra to solve a geometric problem			
AO3	10	Use algebra to solve a contextual geometric problem			

Assessment Objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression by collecting like terms			
AO1	2	Simplify algebraic products using the laws of indices			
AO1	3	Expand and simplify a binomial product			
AO1	4	Factorise a quadratic expression into brackets			
AO1	5	Simplify algebraic quotients using the laws of indices			
AO2	6	Understand the difference between an equation and an identity			
AO2	7	Factorise and collect like terms to derive a length from an area			
AO2	8	Use algebra to generalise a mathematical concept			
AO3	9	Use algebra to solve a geometric problem			
AO3	10	Use algebra to solve a contextual geometric problem			

[^0]: We'd like to know your view on the resources we produce. By clicking on 'Like' or 'Dislike' you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.
 If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest

[^1]: OCR Resources: the small print
 OCR's resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board, and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.
 © OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

 OCR acknowledges the use of the following content: Maths and English icons: AirOne/Shutterstock.com

