Mixed practice 8

- **1** a Sketch the graph of $y = e^{0.8x}$.
 - **b** Find the gradient of your graph at the point where x = 3.
 - c Use your graph to determine the number of solutions of the equation $e^{0.8x} = \frac{1}{r}$.
- 2 The amount of substance in a chemical reaction is decreasing according to the equation $m = 32e^{-0.14t}$ where m grams is the mass of the substance t seconds after the start of the reaction.
 - a State the amount of the substance at the start of the reaction.
 - **b** At what rate is the amount of substance decreasing 3 seconds after the start of the reaction?
 - c How long will it take for the amount of substance to halve?
- 3 Use graphs to determine the number of solutions of the equation $\ln x = \frac{3}{x^2}$.
- The volume of a blob of algae (V) in cm³ in a jar is modelled by $V = 0.4 \times 2^{0.1t}$ where t is the time in weeks after the observation begins.
 - a What is the initial volume of the algae?
 - b How long does it take for the volume of algae to double?
 - c Give two reasons why the model would not be valid for predicting the volume in 10 years' time.
- A rumour spreads exponentially through a school. When school begins (at 9 a.m.) 18 people know it.

 By 10 a.m. 42 people know it.

Let N be the number of people who know the rumour after t minutes.

- a Find constants A and k so that $N = Ae^{kt}$.
- b How many people know the rumour at 10:30?
- c There are 1200 people in the school. According to the exponential model at what time will everyone know the rumour?
- A patient is being treated for a condition by having insulin injected. The level of insulin (I) in the blood t minutes after the injection is given by $I = 10e^{-0.05t} + 2$, measured in microunits per millilitre (μU/ml).
 - a What is the level of insulin immediately after the injection?
 - b There is a danger of coma if insulin levels fall below 1.8 μ U/ml. According to the model, will this level be reached? Justify your answer.

- It is thought that the global population of tigers is falling exponentially. Estimates suggest that in 1970 there were 37 000 tigers but by 1980 the number had dropped to 22 000.
 - a A model of the form $T = ka^n$ is suggested, connecting the number of tigers (T) with the number of years (n) after 1970.
 - i Show that $22\,000 = ka^{10}$.
 - ii Write another similar equation and solve them to find k and a.
 - **b** What does the model predict the tiger population will be in 2020?
 - c When the population reaches 1000, the tiger population will be described as 'near extinction'. In which year will this happen?
- 8 A zoologist believes that the population of fish in a small lake is growing exponentially. He collects data about the number of fish every 10 days for 50 days. The data are given in this table:

Time (days)	0	10	20	30	40	50
Number of fish	35	42	46	51	62	71

The zoologist proposes a model of the form $N = Ae^{kt}$ where N is the number of fish and t is time in days. In order to estimate the values of the constant A and k he plots a graph with t on the horizontal axis and $\ln N$ on the vertical axis.

- a Explain why, assuming the zoologist's model is correct, this graph will be approximately a straight line.
- **b** Complete the table of values for the graph:

t	0	10	20	30	40	50
ln N	3.56	3.74	3.83	3.93		4.26

- **c** Find the equation of the line of best fit for this table. (Do not draw the graph.) Hence estimate the values of *A* and *k*.
- **d** Use this model to predict the number of fish in the lake when t = 260.
- e The zoologist finds that the number of fish in the lake after 260 days is actually 720. Suggest one reason why the observed data does not fit the prediction.
- Quantities m and t are related by an equation of the form $m = at^p$ where a and p are constants. The graph of $\log m$ against $\log t$ is a straight line that passes through the points (2, 5) and (4, 0). Find the values of a and p.

10 A substance is decaying in such a way that its mass, $m \log n$ at a time *t* years from now is given by the formula $m = 240e^{-0.04t}$.

- Find the time taken for the substance to halve its mass.
- ii Find the value of t for which the mass is decreasing at a rate of 2.1 kg per year.

© OCR, AS GCE Mathematics, Paper 4723, June 2007

The mass, M grams, of a certain substance is increasing exponentially so that, at time t hours, the mass is given by $M = 40e^{kt}$, where k is a constant. The following table shows certain values of t and M.

t	0	21	63
M		80	

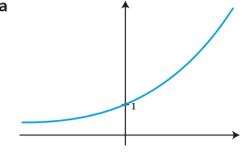
- In either order,
 - a find the values missing from the table,
 - **b** determine the value of *k*.
- ii Find the rate at which the mass is increasing when t=21.

© OCR, AS GCE Mathematics, Paper 4723, January 2009

- Radioactive decay can be modelled using an equation of the form $m = m_0 e^{-kt}$ where m is the mass of the radioactive substance at time t, m_0 is the initial mass and k is a positive constant. The half-life of a radioactive substance is the length of time it takes for half of the substance to decay. A particular radioactive substance has a half-life of 260 years. Find the value of k.
- The speed, $V \,\mathrm{m}\,\mathrm{s}^{-1}$, of a parachutist, t seconds after jumping from the aeroplane, is modelled by the equation $V = 42(1 - e^{-0.2t}).$
 - a What is the initial speed of the parachutist?
 - **b** What is the maximum speed that the parachutist could reach?
 - When the parachutist reaches 22 m s⁻¹ he opens the parachute. For how long is he falling before he opens his parachute?
- When a cup of tea is first made its temperature is 98°C. After two minutes the temperature has reached 94°C. The room temperature is 22°C and the difference between the temperature of the tea and the room temperature decreases exponentially.
 - Let T be the temperature of the tea and t be the time, in minutes, since the tea was made. Find the constants C and t so that $T - 22 = Ce^{-kt}$.
 - **b** Find the time it takes for the tea to cool to 78°C.

Mixed practice 8

1 a



b 8.82

c One

- **2** a 32 g
- **b** -2.94 g s^{-1}
- **c** 4.95 s

- 3 One
- **4 a** 0.4 cm^3

- **b** 10 weeks
- c Model is for algae in a jar, which limits volume; extrapolation beyond model's validity
- **5** a A = 18, k = 0.0141
- **b** 64

- c 1.58 p.m.
- 6 a $12 \mu U/ml$
 - **b** No long-term level is $2 \mu U/ml$
- **7** a i Proof
 - ii $k = 37\,000$, a = 0.949
 - **b** 2700

- **c** 2039
- **8** a $\ln(N) = kt + \ln(A)$
- **b** 4.13, 4.26
- c $\ln(N) = 0.0137t + 3.56$; $N = 35.2e^{0.0137t}$
- **d** 1240
- e Size of the lake limits indefinite growth; seasonal variation

9
$$p = -2.5$$
, $a = 10^{10}$

- **10 a** 17.3 years
- **b** 38.0 years
- **11 a i** 40, 320

ii k = 0.0330

- **b** $2.4g h^{-1}$
- **12** 0.002 67 s
- 13 a 0 m s^{-1}
- **b** 42 m s^{-1} **c** 3.71 s
- **14 a** C = 76, k = 0.027 **b** 11.3 min