1 Let $\mathrm{p}(x)=3 x^{2}+2 x-1$ and $\mathrm{q}(x)=x^{2}-2 x+3$. Find $\mathrm{p}(x)+\mathrm{q}(x), \mathrm{p}(x)-\mathrm{q}(x)$ and $\mathrm{p}(x) \mathrm{q}(x)$.
2 The polynomials $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are $2 x^{2}+a x-3$ and $3 x^{2}-b x-2$ respectively, where a and b are constants. In the product $\mathrm{f}(x) \mathrm{g}(x)$, the coefficient of x^{3} is 6 and the coefficient of x is 1 . Find the coefficient of x^{2}.

3 Let $\mathrm{p}(x)=x^{2}-6 x-3$ and $\mathrm{q}(x)=x^{2}-2 x+4$.
(a) Calculate $\mathrm{p}(x)-\mathrm{q}(x)$ and $\mathrm{p}(x) \mathrm{q}(x)$.

The polynomial $\mathrm{p}(x)+a \mathrm{q}(x)$, where a is a constant, is a perfect square.
(b)* Calculate the two possible values of a.

4 In the product of $8 x^{3}+3 x^{2}-8 x-4$ and $3 x-4$, find the coefficients of
(a) x,
(b) x^{3}.

5 Calculate the polynomial $\left(3 x^{2}+4 x-3\right)^{2}-\left(3 x^{2}-x+2\right)^{2}$.

$$
\begin{aligned}
& 14 x^{2}+2,2 x^{2}-4 x-4 \\
& 3 x^{4}-4 x^{3}+4 x^{2}+8 x-3
\end{aligned}
$$

$2-25$
3 (a) $-4 x-7, x^{4}-8 x^{3}+13 x^{2}-18 x-12$
(b) $3,-\frac{4}{3}$
4 (a) 20
(b) -23
$530 x^{3}-15 x^{2}-20 x+5$

