Mixed practice 13

(1) Find the gradient function of $\mathrm{f}(x)=\frac{3 x-2}{\sqrt{x}}$.
(2) A curve has equation $y=\left(4 x^{2}-1\right)(3-x)$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(3) $\mathrm{f}(x)=\frac{x^{2}-4}{2 x}$. Find $\mathrm{f}^{\prime \prime}(2)$.
(4) Given that $\mathrm{f}(x)=3 \sqrt{x}-\frac{2}{\sqrt{x}}$ find:
a $\mathrm{f}^{\prime}(x)$
b the gradient of the graph of $y=\mathrm{f}(x)$ at the point where $x=4$.
(5. $\mathrm{f}(x)=x^{2}+b x+c$. If $\mathrm{f}(1)=2$ and $\mathrm{f}^{\prime}(2)=12$ find the values of b and c.
(6) a Find the gradient of the curve $y=3 \sqrt{x}-2$ at the point where it crosses the x-axis.
b Is the curve increasing or decreasing at this point? Give a reason for your answer.
(7) Find the range of values of x for which the function $y=3 x^{2}-4 x$ is increasing.

8 Find the rate of change of gradient of $y=x^{2}-2 \sqrt{x}$ at the point where $x=9$.
(9) Given that $y=\frac{5}{x^{2}}-\frac{1}{4 x}+x$, find:
i $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
ii $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
© OCR, AS GCE Mathematics, Paper 4721, January 2011
(10) $y=x^{2}+a x-7$ is increasing for $x>5$. Find a.
(11) What is the rate of change of the gradient of $y=x^{3}+4 x^{2}-2 x+1$ at $x=\frac{1}{2}$?
(12) This graph shows the gradient function, $\mathrm{f}^{\prime}(x)$, of a function $\mathrm{f}(x)$.

Which of the following is definitely true at the point A ?

A $\mathrm{f}(x)$ has a minimum
B $\mathrm{f}(x)$ has a maximum
C $\mathrm{f}(x)=0$
D $\mathrm{f}^{\prime \prime}(x)=0$
(13) The diagram shows part of the curve $y=x^{2}+5$. The point A has coordinates $(1,6)$. The point B has coordinates $\left(a, a^{2}+5\right)$, where a is a constant greater than 1 . The point C is on the curve between A and B.

i Find by differentiation the value of the gradient of the curve at the point A.
ii The line segment joining the points A and B has gradient 2.3. Find the value of a.
iii State a possible value for the gradient of the line segment joining the points A and C.
(14) Use differentiation from first principles to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=x^{3}-5 x$.
(15) The diagram shows the graph of $y=\mathrm{f}^{\prime}(x)$.

a State the value of the gradient of the graph of $y=\mathrm{f}(x)$ at the point marked A.
b Is the function $\mathrm{f}(x)$ increasing or decreasing at the point marked B ?
c Sketch the graph of $y=\mathrm{f}(x)$.
16 Find the coordinates of the point on the curve $y=\sqrt{x}+3 x$ where the gradient is 5 .
17 Find the gradient of the graph of $y=\frac{1}{2 \sqrt{x}}$ at the point where the y-coordinate is 3 .
(18) $\mathrm{f}(x)=a x^{3}+b x^{-2}$ where a and b are constants. $\mathrm{f}^{\prime}(1)=18$ and $\mathrm{f}^{\prime \prime}(1)=18$.

Find a and b.
(19) $\mathrm{f}(x)=\sqrt{x^{3}}+15 \sqrt{x}$

Find the values of x for which the gradient of $\mathrm{f}(x)$ is 9 .
20 Find the range of values of x for which the gradient of the graph $y=x^{4}-2 x^{2}+3$ is decreasing.

Mixed practice 13

$1 \frac{3}{2} x^{-\frac{1}{2}}+x^{-\frac{3}{2}}$
$16\left(\frac{1}{16}, \frac{7}{16}\right)$
$2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-12 x^{2}+24 x+1$
17-54
$18 a=4.8, b=-1.8$
$19 x=1,25$
4 a $^{2}(x)=\frac{3}{2} x^{-\frac{1}{2}}+x^{-\frac{3}{2}}$
b $\frac{7}{8}$
$5 b=8, c=-7$
6 a $\frac{9}{4}$
b Positive gradient; increasing
$7 x>\frac{2}{3}$
$8 \frac{109}{54}$
9 a $-\frac{10}{x^{3}}+\frac{1}{4 x^{2}}+1$
b $\frac{30}{x^{4}}-\frac{1}{2 x^{3}}$
$10 a=-10$
$11 \frac{11}{4}$
12 D
13 a $2 \quad$ b 1.3
c Anything between 2 and 2.3
$143 x^{2}-5$
15 a 0 b Increasing c

