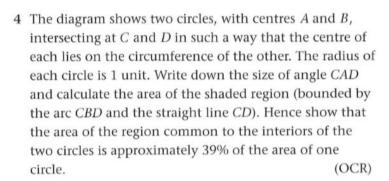
Radians (answers at the end)

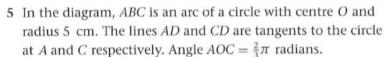
1 The diagram shows a sector of a circle with centre O and radius 6 cm.

Angle POQ = 0.6 radians. Calculate the length of arc PQ and the area of sector POQ. (OCR)

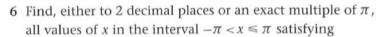
2 A sector OAB of a circle, of radius a and centre O, has $\angle AOB = \theta$ radians. Given that the area of the sector OAB is twice the square of the length of the arc AB, find θ . (OCR)

3 The diagram shows a sector of a circle, with centre *O* and radius *r*. The length of the arc is equal to half the perimeter of the sector. Find the area of the sector in terms of *r*. (OCR)





Calculate the area of the region enclosed by *AD*, *DC* and the arc *ABC*, giving your answer correct to 2 significant figures. (OCR)



(a)
$$\sin x = -0.16$$
,

(b)
$$\cos x (1 + \sin x) = 0$$
,

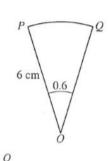
(c)
$$(1 - \tan x) \sin x = 0$$
,

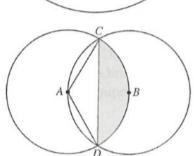
(d)
$$\sin 2x = 0.23$$
.

7 The diagram shows a circle with centre O and radius r, and a chord AB which subtends an angle θ radians at O. Express the area of the shaded segment bounded by the chord AB in terms of r and θ .

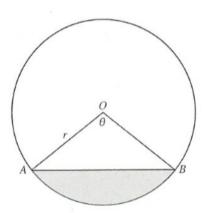
Given that the area of this segment is one-third of the area of triangle OAB, show that $3\theta - 4 \sin \theta = 0$.

Find the positive value of θ satisfying $3\theta - 4\sin\theta = 0$ to within 0.1 radians, by tabulating values of $3\theta - 4\sin\theta$ and looking for a sign change, or otherwise. (OCR)

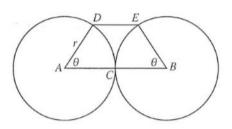








8 The diagram shows two circles, with centres A and B, which touch at C. The radius of each circle is r. The points D and E, one on each circle, are such that DE is parallel to the line ACB. Each of the angles DAC and *EBC* is θ radians, where $0 < \theta < \pi$. Express the length of *DE* in terms of r and θ .



The length of DE is equal to the length of each of the minor arcs CD and CE.

- (a) Show that $\theta + 2\cos\theta 2 = 0$.
- (b) Sketch the graph of $y = \cos \theta$ for $0 < \theta < \frac{1}{2}\pi$. By drawing on your graph a suitable straight line, the equation of which must be stated, show that the equation $\theta + 2\cos\theta - 2 = 0$ has exactly one root in the interval $0 < \theta < \frac{1}{2}\pi$.

Verify by calculation that θ lies between 1.10 and 1.11.

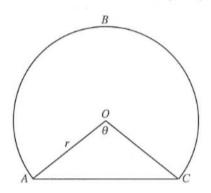
(OCR)

9 The diagram shows an arc ABC of a circle with centre O and radius r, and the chord AC. The length of the arc *ABC* is s, and angle $AOC = \theta$ rad. Express θ in terms of r and s, and deduce that the area of triangle AOC may be expressed as

$$\frac{1}{2}r^2\sin\!\left(2\pi-\frac{s}{r}\right).$$

Show, by a graphical argument based on a sketch of $y = \sin x$, or otherwise, that

$$\sin(2\pi - \alpha) = -\sin\alpha,$$



where α is any angle measured in radians.

Given that the area of triangle AOC is equal to one-fifth of the area of the major sector *OABC*, show that $\frac{s}{r} + 5\sin(\frac{s}{r}) = 0$.

- 10 Solve the equation $3\sin^2\theta + 4\cos\theta = 4$, giving all the roots, correct to 2 decimal places as appropriate, in the interval $0 \le \theta \le 2\pi$.
- 11 Solve the following equations giving any roots in terms of π in the interval $-2\pi \le 0 \le 2\pi$.

(a)
$$2\cos^2\theta + \sin^2\theta = 0$$

(b)
$$2\cos^2\theta + \sin^2\theta = 1$$

(a)
$$2\cos^2\theta + \sin^2\theta = 0$$
 (b) $2\cos^2\theta + \sin^2\theta = 1$ (c) $2\cos^2\theta + \sin^2\theta = 2$

$$2 \frac{1}{4}$$

$$3 r^2$$

4
$$\frac{2}{3}\pi$$
, $\frac{1}{3}\pi - \frac{1}{4}\sqrt{3}$

6 (a)
$$-2.98$$
, -0.16 (b) $-\frac{1}{2}\pi$, $\frac{1}{2}\pi$

(b)
$$-\frac{1}{2}\pi$$
, $\frac{1}{2}\pi$

(c)
$$-\frac{3}{4}\pi$$
, 0, $\frac{1}{4}\pi$, π

(d)
$$-3.03$$
, -1.69 , 0.12 , 1.45

$$7 \frac{1}{2}r^2 (\theta - \sin \theta), 1.2 < \theta < 1.3$$

$$8 DE = 2r - 2r \cos \theta$$

(b)
$$y = 1 - \frac{1}{2}\theta$$

$$9 \theta = 2\pi - \frac{s}{r}$$

10 0, 1.23, 5.05,
$$2\pi$$

(b)
$$-\frac{3}{2}\pi$$
, $-\frac{1}{2}\pi$, $\frac{1}{2}\pi$, $\frac{3}{2}\pi$

(c)
$$-2\pi$$
, $-\pi$, 0, π , 2π