1 Show that the triangle formed by the points $(-2,5),(1,3)$ and $(5,9)$ is right-angled.
2 Find the coordinates of the point where the lines $2 x+y=3$ and $3 x+5 y-1=0$ meet.
3 A triangle is formed by the points $A(-1,3), B(5,7)$ and $C(0,8)$.
(a) Show that the angle $A C B$ is a right angle.
(b) Find the coordinates of the point where the line through B parallel to $A C$ cuts the x-axis.
$4 A(7,2)$ and $C(1,4)$ are two vertices of a square $A B C D$.
(a) Find in the form $a x+b y=c$ the equation of the diagonal $B D$.
(b) Find the coordinates of B and of D.

5 A quadrilateral $A B C D$ is formed by the points $A(-3,2), B(4,3), C(9,-2)$ and $D(2,-3)$.
(a) Show that all four sides are equal in length.
(b) Show that $A B C D$ is not a square.
$6 P$ is the point $(7,5)$ and l_{1} is the line with equation $3 x+4 y=16$.
(a) Find the equation of the line l_{2} which passes through P and is perpendicular to l_{1}.
(b) Find the point of intersection of the lines l_{1} and l_{2}.
(c) Find the perpendicular distance of P from the line l_{1}.

7 Prove that the triangle with vertices $(-2,8),(3,20)$ and $(11,8)$ is isosceles. Find its area.
8 The three straight lines $y=x, 7 y=2 x$ and $4 x+y=60$ form a triangle. Find the coordinates of its vertices.

9 Find the equation of the line through $(1,3)$ which is parallel to $2 x+7 y=5$. Give your answer in the form $a x+b y=c$.

10 Find the equation of the perpendicular bisector of the line joining $(2,-5)$ and $(-4,3)$. Give your answer in the form $a x+b y+c=0$.

11 The points $A(1,2), B(3,5), C(6,6)$ and D form a parallelogram. Find the coordinates of the mid-point of $A C$. Use your answer to find the coordinates of D.

12 The point P is the foot of the perpendicular from the point $A(0,3)$ to the line $y=3 x$.
(a) Find the equation of the line $A P$.
(b) Find the coordinates of the point P.
(c) Find the perpendicular distance of A from the line $y=3 x$.

13 Points which lie on the same straight line are called collinear. Show that the points $(-1,3)$, $(4,7)$ and $(-11,-5)$ are collinear.

14 Find the equation of the straight line that passes through the points $(3,-1)$ and $(-2,2)$, giving your answer in the form $a x+b y+c=0$. Hence find the coordinates of the point of intersection of the line and the x-axis.
(OCR)

15 The coordinates of the points A and B are $(3,2)$ and $(4,-5)$ respectively. Find the coordinates of the mid-point of $A B$, and the gradient of $A B$.

Hence find the equation of the perpendicular bisector of $A B$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(OCR)

16 The curve $y=1+\frac{1}{2+x}$ crosses the x-axis at the point A and the y-axis at the point B.
(a) Calculate the coordinates of A and of B.
(b) Find the equation of the line $A B$.
(c) Calculate the coordinates of the point of intersection of the line $A B$ and the line with equation $3 y=4 x$.

17 The straight line p passes through the point $(10,1)$ and is perpendicular to the line r with equation $2 x+y=1$. Find the equation of p.

Find also the coordinates of the point of intersection of p and r, and deduce the perpendicular distance from the point $(10,1)$ to the line r.
(OCR)
18 Show by calculation that the points $P(0,7), Q(6,5), R(5,2)$ and $S(-1,4)$ are the vertices of a rectangle.

19 The line $3 x-4 y=8$ meets the y-axis at A. The point C has coordinates $(-2,9)$. The line through C perpendicular to $3 x-4 y=8$ meets it at B. Calculate the area of the triangle $A B C$.

20 The points $A(-3,-4)$ and $C(5,4)$ are the ends of the diagonal of a rhombus $A B C D$.
(a) Find the equation of the diagonal $B D$.
(b) Given that the side $B C$ has gradient $\frac{5}{3}$, find the coordinates of B and hence of D.

21 Find the equations of the medians (see Exercise 1D Question 6) of the triangle with vertices $(0,2),(6,0)$ and $(4,4)$. Show that the medians are concurrent (all pass through the same point).

22 The line l_{1} passes through the points $A(4,8)$ and $B(10,26)$. Show that an equation for l_{1} is $y=3 x-4$.
The line l_{1} intersects the line l_{2}, which has equation $y=5 x+4$, at C. Find the coordinates of C.

23 The point A has coordinates $(1,7)$ and the point B has coordinates $(3,1)$. The mid-point of $A B$ is P. Find the equation of the straight line which passes through P and which is perpendicular to the line $5 y+x=7$. Give your answer in the form $y=m x+c$.
(OCR)
24 (a) The point A has coordinates $(2,3)$ and the line l_{1} has equation $x+4 y=31$. The line l_{2} passes through A and is perpendicular to l_{1}. Find the equation of l_{2} in the form $y=m x+c$.
(b) The lines l_{1} and l_{2} intersect the point M. Find the coordinates of M.
(c) The point A is a vertex of the square $A B C D$. The diagonals of the square intersect at M. Find the coordinates of C.
(OCR)
25 The coordinates of A, B and C are $(-2,3),(2,5)$ and $(4,1)$ respectively.
(a) Find the gradients of the lines $A B, B C$ and $C A$.
(b) Hence or otherwise show that the triangle $A B C$ is a right-angled triangle.
(OCR)

$$
\begin{aligned}
& 2(2,-1) \\
& 3 \text { (b) }(3.6,0) \\
& 4 \text { (a) } 3 x-y=9 \\
& \text { (b) }(3,0) \text { and }(5,6) \\
& 6 \text { (a) } 4 x-3 y=13 \\
& \text { (b) }(4,1) \\
& \text { (c) } 5 \\
& 7 \text { Area }=78 \\
& 8(0,0),(12,12) \text { and }(14,4) \\
& 92 x+7 y=23 \\
& 103 x-4 y-1=0 \\
& 11\left(3 \frac{1}{2}, 4\right),(4,3) \\
& 12 \\
& \text { (b) }(0.9,2.7) \\
& \text { (c) } \sqrt{0.9} \\
& 143 x+5 y-4=0,\left(1 \frac{1}{3}, 0\right) \\
& 15\left(3 \frac{1}{2},-1 \frac{1}{2}\right),-7, x-7 y-14 \doteq 0 \\
& 16 \text { (a) }(-3,0),(0,1.5) \\
& \text { (b) } x-2 y+3=0 \\
& \text { (c) }(1.8,2.4) \\
& 17 x-2 y-8=0,(2,-3), \sqrt{80} \\
& 1925 \\
& 20 \text { (a) } x+y=1 \\
& \text { (b) }(2,-1),(0,1) \\
& 21 y=2,3 x+4 y=18, y=3 x-8 \\
& 22(-4,-16) \\
& 23 y=5 x-6 \\
& 24 \text { (a) } y=4 x-5 \\
& \text { (b) }(3,7) \\
& \text { (c) }(4,11) \\
& 25 \text { (a) } \frac{1}{2},-2,-\frac{1}{3} \\
& \text { (b) As gradient } A B \times \text { gradient } B C=-1, A B \text { is } \\
& \text { perpendicular to } B C \text {, so triangle } A B C \text { is } \\
& \text { right-angled. }
\end{aligned}
$$

