Mixed practice 2

- 1 Express $(n+\sqrt{5})^2$ in the form $a+b\sqrt{5}$.
- 2 If $z = xy^2$ and y = 3x express z in terms of x only.
- 3 Show that $\frac{10}{\sqrt{28}-\sqrt{8}}$ can be written in the form $\sqrt{a}+\sqrt{b}$.
- 4 If $y = \frac{2}{\sqrt{x}}$, write y^{-4} in the form kx^a .
- 5 If $3x\sqrt{8} = x\sqrt{2} + \sqrt{32}$, find x.
- Simplify
 - i $(\sqrt[3]{x})^6$,
 - ii $\frac{3y^4 \times (10y)^3}{2v^5}$.
 - © OCR, AS GCE Mathematics, Paper 4721, January 2009
- \bigcirc Express each of the following in the form 3^n :
 - **i** $\frac{1}{9}$,
 - ii $\sqrt[3]{3}$,
 - iii $3^{10} \times 9^{135}$.
 - © OCR, AS GCE Mathematics, Paper 4721, June 2009
 - 8 Simplify $\left(x^4 + 7x^3 \times \frac{x}{9}\right)^{\frac{1}{2}}$.
 - **9** Rationalise the denominator of $\frac{\sqrt{n}+1}{\sqrt{n}-1}$.
 - 10 a Find and simplify an expression for $(a+b\sqrt{5})^2$.
 - **b** By considering $(2-\sqrt{5})^4$ show that $\sqrt{5} < \frac{161}{72}$.
 - c By considering $(2-\sqrt{5})^3$ show that $\sqrt{5} > \frac{38}{17}$.
 - **d** i Explain why considering $(3-\sqrt{5})^3$ gives a worse upper bound on $\sqrt{5}$ than found in part **b**.
 - ii Explain why considering $(4-\sqrt{5})^4$ would not give as good an upper bound on $\sqrt{5}$ as found in part **b**.

1
$$n^2 + 5 + 2n\sqrt{5}$$

2
$$z = 9x^3$$

3
$$\sqrt{2} + \sqrt{7}$$

4
$$\frac{1}{16}x^2$$

5
$$x = 0.8$$

6 a
$$x^2$$

b
$$1500y^2$$

7 a
$$3^{-2}$$
 b $3^{\frac{1}{3}}$ c 3^{280}

8
$$\frac{3}{4x^2}$$

$$9 \ \frac{1+n+2\sqrt{n}}{n-1}$$

10 a
$$a^2 + b^2 + 2ab\sqrt{5}$$

- **b** Proof
- **c** Proof
- **d** i Upper bound because $3 \sqrt{5} > 0$ so an odd power is also bigger than zero; worse because $\sqrt{5}$ is closer to 2 than to 3
 - ii Because $4 \sqrt{5} > 1$, large powers get further away from zero or one