1 Find the equation of the normal to the curve with equation $y=\sqrt{x}$ at the point $(1,1)$. Calculate the coordinates of the point at which this normal meets the graph of $y=-\sqrt{x}$.

2 For the curve $y=\frac{4}{x^{2}}$, find
(a) the equation of the tangent at $\left(-2 \sqrt{2}, \frac{1}{2}\right)$,
(b) the equation of the normal at $(\sqrt{2}, 2)$.

Show that the lines in parts (a) and (b) are the same. Illustrate this with a sketch.
3 On the curve $y=\frac{1}{x}, P$ is the point at which $x=p$. Find the following, in terms of p.
(a) The y-coordinate of P.
(b) The value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at P.
(c) The equation of the tangent at P.
(d) The coordinates of the points Q and R where the tangent meets the x - and y-axes.
(e) The area of the triangle $O Q R$.

4 Find the equations of the tangent and the normal to the graph with equation $y=\frac{1}{x}-\frac{4}{x^{2}}$ at the points where $x=1$ and $x=8$.

5 (a) Show that $\sqrt{2 x}=\sqrt{2} \sqrt{x}$. Hence differentiate $\sqrt{2 x}$, giving your answer in surd form.
(b) Differentiate $\sqrt{4 x^{3}}$ and $\sqrt[3]{4 x^{4}}$, giving your answers in surd form.

6 Differentiate the following, giving your answers in index form.
(a) $\frac{\sqrt{x}-1}{x^{2}}$
(b) $\frac{x \sqrt{x}-1}{x \sqrt{x}}$
(c) $\left(\frac{\sqrt{x}-1}{x^{2}}\right)^{2}$
(d) $\left(\frac{x \sqrt{x}-1}{x \sqrt{x}}\right)^{2}$

7 The tangents at $x=\frac{1}{4}$ to $y=\sqrt{x}$ and $y=\frac{1}{\sqrt{x}}$ meet at P. Find the coordinates of P.
8 The normals at $x=2$ to $y=\frac{1}{x^{2}}$ and $y=\frac{1}{x^{3}}$ meet at Q. Find the coordinates of Q.
9 (a) Draw a sketch to show the graphs of $y=\frac{1}{x^{2}}$ and $y=\sqrt{x}$ and their point of intersection at the point $P(1,1)$. Find the gradient of each curve at P, and show that the tangent at P to each curve is the normal to the other curve.
(b) The graphs of $y=x^{m}$ and $y=x^{n}$ intersect at the point $P(1,1)$. Find the connection between m and n if the tangent to each curve at P is the normal to the other curve.

1 $y+2 x=3 ;\left(\frac{9}{4},-\frac{3}{2}\right)$
2 (a),(b) $2 \sqrt{2} y=x+3 \sqrt{2}$
3 (a) $\frac{1}{p}$
(b) $-\frac{1}{p^{2}}$
(c) $p^{2} y+x=2 p$
(d) $(2 p, 0),\left(0, \frac{2}{p}\right)$
(e) 2
$4 y=7 x-10,7 y+x=-20 ; y=\frac{1}{16}, x=8$
5 (a) $\frac{1}{\sqrt{2 x}}$
(b) $3 \sqrt{x}, \frac{4}{3} \sqrt[3]{4 x}$
6 (a) $-\frac{3}{2} x^{-\frac{5}{2}}+2 x^{-3}$
(b) $\frac{3}{2} x^{-\frac{5}{2}}$
(c) $-3 x^{-4}+7 x^{-\frac{9}{2}}-4 x^{-5}$
(d) $3 x^{-\frac{5}{2}}-3 x^{-4}$
$7\left(\frac{11}{20}, \frac{4}{5}\right)$
$8\left(\frac{67}{32}, \frac{5}{8}\right)$
9 (b) $m n=-1$

