Mixed practice 4

1 The diagram shows the graph with equation $y=a x^{4}+b x^{3}+c x^{2}+$ $d x+e$. Find the values of a, b, c, d and e.

2 Show that
$\frac{x^{3}+2 x^{2}-3 x-6}{x+2}=x^{2}+b x+c$
where b and c are integers to be found.
3 a Show that $(x-2)$ is a factor of $\mathrm{f}(x)=x^{3}-4 x^{2}+x+6$.
b Factorise $\mathrm{f}(x)$.
c Sketch the graph of $y=\mathrm{f}(x)$.
(2) 4 Two cubic polynomials are defined by $\mathrm{f}(x)=x^{3}+(a-3) x+2 b$, $\mathrm{g}(x)=3 x^{3}+x^{2}+5 a x+4 b$, where a and b are constants.
i Given that $\mathrm{f}(x)$ and $\mathrm{g}(x)$ have a common factor of $(x-2)$, show that $a=-4$ and find the value of b.
ii Using these values of a and b, factorise $\mathrm{f}(x)$ fully. Hence show that $\mathrm{f}(x)$ and $\mathrm{g}(x)$ have two common factors.
© OCR, AS GCE Mathematics, Paper 4722, June 2012
5 a Given that $(2 x-1)$ and $(x+2)$ are factors of $2 x^{3}+a x^{2}+4 x+b$, find the values of a and b.
b Hence sketch the graph of $y=2 x^{3}+a x^{2}+4 x+b$.
6) Sketch the graph of $y=(x-a)^{2}(x-b)(x-c)$ where $b<0<a<c$.
(2) The cubic polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=x^{3}+x^{2}-11 x+10$.
i Use the factor theorem to find a factor of $\mathrm{f}(x)$.
ii Hence solve the equation $\mathrm{f}(x)=0$, giving each root in an exact form.
© OCR, AS GCE Mathematics, Paper 4722, June 2011
8 The polynomial $x^{2}-4 x+3$ is a factor of the polynomial $x^{3}+a x^{2}+27 x+b$. Find the values of a and b.

```
Mixed practice 4
    1 \mp@code { 1 ~ = ~ 1 , b = 2 , c = - 1 2 , d = - 1 8 , e = 2 7 }
    2 b=0,c=-3
    3 a f(2)=0
    b }\textrm{f}(x)=(x-2)(x+1)(x-3
    c
```


4 a $b=3$
b $\mathrm{f}(x)=(x-2)(x+3)(x-1)(x+3)$ is also a factor of $\mathrm{g}(x)$.
5 a $a=7, b=-4$
b

6

7 a ($x-2$)
b $2, \frac{-3 \pm \sqrt{29}}{2}$
$8 a=-10, b=-18$

