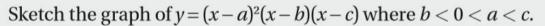

Mixed practice 4

The diagram shows the graph with equation $y = ax^4 + bx^3 + cx^2 + dx + e$. Find the values of a, b, c, d and e.

2 Show that

$$\frac{x^3 + 2x^2 - 3x - 6}{x + 2} = x^2 + bx + c$$


where b and c are integers to be found.

- 3 a Show that (x-2) is a factor of $f(x) = x^3 4x^2 + x + 6$.
 - **b** Factorise f(x).
 - **c** Sketch the graph of y = f(x).
- Two cubic polynomials are defined by $f(x) = x^3 + (a-3)x + 2b$, $g(x) = 3x^3 + x^2 + 5ax + 4b$, where a and b are constants.
 - i Given that f(x) and g(x) have a common factor of (x-2), show that a = -4 and find the value of b.
 - ii Using these values of a and b, factorise f(x) fully. Hence show that f(x) and g(x) have two common factors.

© OCR, AS GCE Mathematics, Paper 4722, June 2012

- Given that (2x-1) and (x+2) are factors of $2x^3 + ax^2 + 4x + b$, find the values of a and b.
 - **b** Hence sketch the graph of $y = 2x^3 + ax^2 + 4x + b$.

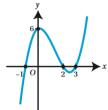
The cubic polynomial f(x) is defined by $f(x) = x^3 + x^2 - 11x + 10$.

- i Use the factor theorem to find a factor of f(x).
- ii Hence solve the equation f(x) = 0, giving each root in an exact form.

© OCR, AS GCE Mathematics, Paper 4722, June 2011

The polynomial $x^2 - 4x + 3$ is a factor of the polynomial $x^3 + ax^2 + 27x + b$. Find the values of a and b.

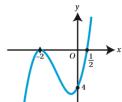
Mixed practice 4


1
$$a = 1$$
, $b = 2$, $c = -12$, $d = -18$, $e = 27$

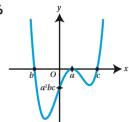
2
$$b = 0$$
, $c = -3$

3 a
$$f(2) = 0$$

b
$$f(x) = (x-2)(x+1)(x-3)$$



4 a
$$b = 3$$


b
$$f(x) = (x-2)(x+3)(x-1)(x+3)$$
 is also a factor of $g(x)$.

5 a
$$a = 7, b = -4$$

4

7 a
$$(x-2)$$

8
$$a = -10$$
, $b = -18$

b 2,
$$\frac{-3 \pm \sqrt{29}}{2}$$