1 Find the equation of the tangent to $y=5 x^{2}-7 x+4$ at the point $(2,10)$.
2 Given the function $\mathrm{f}(x)=x^{3}+5 x^{2}-x-4$, find
(a) $\mathrm{f}^{\prime}(-2)$
(b) the values of a such that $\mathrm{f}^{\prime}(a)=56$.

3 Find the equation of the normal to $y=x^{4}-4 x^{3}$ at the point for which $x=\frac{1}{2}$.
4 Find the equation of the tangent at $x=3$ to the curve with equation $y=2 x^{2}-3 x+2$.
5 Find the point on the curve $y=2 x^{2}-3 x+1$ where the tangent has gradient 1 .
6 Find the two points on the curve $y=2 x^{3}-5 x^{2}+9 x-1$ at which the gradient is 13 .
7 Find the equation of the normal to $y=(2 x-1)(3 x+5)$ at the point $(1,8)$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

8 The curve $y=x^{2}-3 x-4$ crosses the x-axis at P and Q. The tangents to the curve at P and Q meet at R. The normals to the curve at P and Q meet at S. Find the distance $R S$.

9 The equation of a curve is $y=2 x^{2}-5 x+14$. The normal to the curve at the point $(1,11)$ meets the curve again at the point P. Find the coordinates of P.

10 The line $y=6 x-7$ is a tangent to the curve $y=x^{2}+k$. Find k.
11 At a particular point of the curve $y=5 x^{2}-12 x+1$ the equation of the normal is $x+18 y+c=0$. Find the value of the constant c.

12 A normal to the curve $y=x^{2}$ has gradient 2. Find where it meets the curve.
$1 y=13 x-16$
2 (a) -9
(b) $a=-\frac{19}{3}, 3$
$380 y=32 x-51$
$49 x-y=16$
5 (1,0)
$6\left(-\frac{1}{3},-4 \frac{17}{27}\right),(2,13)$
$7 x+19 y-153=0$
813
$9(2,12)$
$10 k=2$
$11-183$
$12\left(-\frac{1}{4}, \frac{1}{16}\right),\left(2 \frac{1}{4}, 5 \frac{1}{16}\right)$

