Mixed practice 10

(1) If $\cos \left(x+180^{\circ}\right)=a$ what is the value of $\cos x$?
(2) Solve the equation $\tan x=-0.62$ for $x \in\left(-90^{\circ}, 270^{\circ}\right)$ giving your answers to the nearest 0.1°.
(3) Solve the equation $\sqrt{2} \sin \theta+1=0$ for $-360^{\circ}<\theta<360^{\circ}$.
4. Find the values of x in the interval $0^{\circ}<x<720^{\circ}$ for which $2 \cos \left(\frac{1}{2} x+45^{\circ}\right)=\sqrt{3}$.
(5) Solve, to 3 s.f., the equation $7 \sin ^{2} \theta=9 \cos ^{2} \theta$ for $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$.
(6) i Show that the equation $2 \sin ^{2} x=5 \cos x-1$ can be expressed in the form $2 \cos ^{2} x+5 \cos x-3=0$.
ii Hence solve the equation $2 \sin ^{2} x=5 \cos x-1$, giving all values of x between 0° and 360°.
(C) OCR, AS GCE Mathematics, Paper 4722, January 2010
(7) a Show that the equation $\cos \theta-2 \sin ^{2} \theta+2=0$ can be expressed in the form $2 \cos ^{2} \theta+\cos \theta=0$.
b Hence find all values of $\theta \in\left[0^{\circ}, 360^{\circ}\right]$ for which $\cos \theta-2 \sin ^{2} \theta+2=0$.
8 How many solutions are there to the equation $\sin ^{2} 2 x=\frac{1}{4}$ in the interval $-180^{\circ}<x<180^{\circ}$?
(9) The diagram shows the graph of the function $\mathrm{f}(x)=a \sin (b x)$.

Find the values of a and b.

(10) Solve the equation $6 \sin ^{2} x+\cos x=4$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Give your answers to 3 s.f.
(11) Prove the identity $\frac{2}{\cos ^{2} x}-\tan ^{2} x=2+\tan ^{2} x$.
(12) i Show that the equation $2 \sin x=\frac{4 \cos x-1}{\tan x} \operatorname{can}$ be expressed in the form $6 \cos ^{2} x-\cos x-2=0$.
ii Hence solve the equation $2 \sin x=\frac{4 \cos x-1}{\tan x}$, giving all values of x between 0° and 360°.
© OCR, AS GCE Mathematics, Paper 4722, January 2013
(13) Prove the identity $\frac{1}{1+\cos x}+\frac{1}{1-\cos x}=\frac{2}{\sin ^{2} x}$.
i Show that $\frac{\sin ^{2} x-\cos ^{2} x}{1-\sin ^{2} x} \equiv \tan ^{2} x-1$.
ii Hence solve the equation $\frac{\sin ^{2} x-\cos ^{2} x}{1-\sin ^{2} x}=5-\tan x$, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
© OCR, AS GCE Mathematics, Paper 4722, June 2010
(15) Show that $\tan x+\frac{1}{\tan x}=\frac{\tan x}{\sin ^{2} x}$.
(16) Find all values of x in the interval $-90^{\circ}<x<90^{\circ}$ that satisfy $6 \cos ^{2} 2 x=\sin 2 x+4$.
(17) a Find the values of k for which the equation $4 x^{2}-k x+1=0$ has a repeated root.
b Show that the equation $4 \sin ^{2} \theta=5-k \cos \theta$ can be written as $4 \cos ^{2} \theta-k \cos \theta+1=0$.
c Let $\mathrm{f}_{k}(\theta)=4 \cos ^{2} \theta-k \cos \theta+1$.
i State the number of values of $\cos \theta$ that satisfy the equation $\mathrm{f}_{4}(\theta)=0$.
ii Find all the values of $\theta \in\left[-360^{\circ}, 360^{\circ}\right]$ that satisfy the equation $\mathrm{f}_{4}(\theta)=0$.
iii Find the value of k for which $x=1$ is a solution of the equation $4 x^{2}-k x+1=0$.
iv For this value of k, find the number of solutions of the equation $\mathrm{f}_{k}(\theta)=0$ for interval $\theta \in\left[-360^{\circ}, 360^{\circ}\right]$.

Mixed practice 10

$1-a$
$2 x=-31.8^{\circ}, 148.2^{\circ}$
$3 \theta=-135^{\circ},-45^{\circ}, 225^{\circ}, 315^{\circ}$
$4 x=570^{\circ}, 690^{\circ}$
$5 \theta= \pm 48.6^{\circ}$
6 a Proof
b $60^{\circ}, 360^{\circ}$
7 a Proof
b $\theta=90^{\circ}, 120^{\circ}, 240^{\circ}, 270^{\circ}$
8 Eight
$9 a=5, b=45^{\circ}$
$10 x=48.2^{\circ}, 120^{\circ}, 240^{\circ}, 312^{\circ}$
11 Proof
12 a Proof
b $x=48.2^{\circ}, 120^{\circ}, 240^{\circ}, 312^{\circ}$
13 Proof
14 a Proof
b $x=45^{\circ}, 99.5^{\circ}, 225^{\circ}, 279^{\circ}$
15 Proof
$16 x=-69.1^{\circ},-20.9^{\circ}, 15^{\circ}, 75^{\circ}$
17 a $k= \pm 4$
b Proof
c i One
ii $\theta= \pm 60^{\circ}, \pm 300^{\circ}$
iii $k=5$
iv Seven

