Mixed practice 10

- 1 If $\cos(x + 180^\circ) = a$ what is the value of $\cos x$?
- Solve the equation $\tan x = -0.62$ for $x \in (-90^\circ, 270^\circ)$ giving your answers to the nearest 0.1°.
- 3 Solve the equation $\sqrt{2} \sin \theta + 1 = 0$ for $-360^{\circ} < \theta < 360^{\circ}$.
- 4 Find the values of x in the interval $0^{\circ} < x < 720^{\circ}$ for which $2\cos(\frac{1}{2}x + 45^{\circ}) = \sqrt{3}$.
- Solve, to 3 s.f., the equation $7 \sin^2 \theta = 9 \cos^2 \theta$ for $-180^\circ \le \theta \le 180^\circ$.
- 6 i Show that the equation $2\sin^2 x = 5\cos x 1$ can be expressed in the form $2\cos^2 x + 5\cos x 3 = 0$.
 - ii Hence solve the equation $2\sin^2 x = 5\cos x 1$, giving all values of x between 0° and 360°.

© OCR, AS GCE Mathematics, Paper 4722, January 2010

- **7** a Show that the equation $\cos \theta 2\sin^2 \theta + 2 = 0$ can be expressed in the form $2\cos^2 \theta + \cos \theta = 0$.
 - b Hence find all values of $\theta \in [0^{\circ}, 360^{\circ}]$ for which $\cos \theta 2\sin^2 \theta + 2 = 0$.
- 8 How many solutions are there to the equation $\sin^2 2x = \frac{1}{4}$ in the interval $-180^\circ < x < 180^\circ$?
- **9** The diagram shows the graph of the function $f(x) = a \sin(bx)$. Find the values of a and b.

Solve the equation $6 \sin^2 x + \cos x = 4$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Give your answers to 3 s.f.

- Prove the identity $\frac{2}{\cos^2 x} \tan^2 x = 2 + \tan^2 x$.
- i Show that the equation $2\sin x = \frac{4\cos x 1}{\tan x}$ can be expressed in the form $6\cos^2 x \cos x 2 = 0$.
 - ii Hence solve the equation $2\sin x = \frac{4\cos x 1}{\tan x}$, giving all values of x between 0° and 360°.

© OCR, AS GCE Mathematics, Paper 4722, January 2013

- Prove the identity $\frac{1}{1+\cos x} + \frac{1}{1-\cos x} = \frac{2}{\sin^2 x}$.
- i Show that $\frac{\sin^2 x \cos^2 x}{1 \sin^2 x} = \tan^2 x 1$.
 - ii Hence solve the equation $\frac{\sin^2 x \cos^2 x}{1 \sin^2 x} = 5 \tan x$, for $0^{\circ} \le x \le 360^{\circ}$.

© OCR, AS GCE Mathematics, Paper 4722, June 2010

- Show that $\tan x + \frac{1}{\tan x} = \frac{\tan x}{\sin^2 x}$.
- Find all values of x in the interval $-90^{\circ} < x < 90^{\circ}$ that satisfy $6\cos^2 2x = \sin 2x + 4$.
- a Find the values of k for which the equation $4x^2 kx + 1 = 0$ has a repeated root.
 - **b** Show that the equation $4\sin^2\theta = 5 k\cos\theta$ can be written as $4\cos^2\theta k\cos\theta + 1 = 0$.
 - c Let $f_k(\theta) = 4\cos^2\theta k\cos\theta + 1$.
 - i State the number of values of $\cos \theta$ that satisfy the equation $f_{A}(\theta) = 0$.
 - ii Find all the values of $\theta \in [-360^{\circ}, 360^{\circ}]$ that satisfy the equation $f_{\star}(\theta) = 0$.
 - iii Find the value of *k* for which x = 1 is a solution of the equation $4x^2 kx + 1 = 0$.
 - iv For this value of k, find the number of solutions of the equation $f_k(\theta) = 0$ for interval $\theta \in [-360^\circ, 360^\circ]$.

Mixed practice 10

$$1 - a$$

2
$$x = -31.8^{\circ}$$
, 148.2°

3
$$\theta = -135^{\circ}$$
, -45° , 225° , 315°

4
$$x = 570^{\circ}$$
, 690°

5
$$\theta = \pm 48.6^{\circ}$$

b
$$\theta = 90^{\circ}$$
, 120° , 240° , 270°

9
$$a = 5$$
, $b = 45^{\circ}$

10
$$x = 48.2^{\circ}$$
, 120° , 240° , 312°

11 Proof

b
$$x = 48.2^{\circ}, 120^{\circ}, 240^{\circ}, 312^{\circ}$$

13 Proof

b
$$x = 45^{\circ}, 99.5^{\circ}, 225^{\circ}, 279^{\circ}$$

16
$$x = -69.1^{\circ}, -20.9^{\circ}, 15^{\circ}, 75^{\circ}$$

17 a
$$k = \pm 4$$

iii
$$k=5$$

ii
$$\theta = \pm 60^{\circ}, \pm 300^{\circ}$$