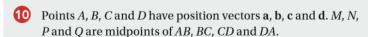
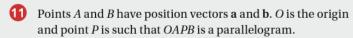

Mixed practice 12

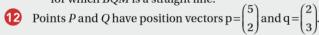
- Points A and B have position vectors $\mathbf{a} = 3\mathbf{i} \mathbf{j}$ and $\mathbf{b} = 2\mathbf{j}$. Find the exact distance between A and B.
- 2 a Given the points P(-5, 2) and Q(1, -3), write vector \overrightarrow{PQ} in the form $a\mathbf{i} + b\mathbf{j}$.
 - **b** Point *R* is such that $\overrightarrow{RQ} = \mathbf{i} 4\mathbf{j}$. Find the coordinates of *R*.
- Points A and B have position vectors $\mathbf{a} = \begin{pmatrix} 12 \\ -7 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$.


 M is the midpoint of AB.
 - a Find the position vector of M.
 - **b** Find the exact distance BM.
- Points A, B and C have position vectors $\mathbf{a} = 3\mathbf{i} \mathbf{j}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j}$ and $\mathbf{c} = 4\mathbf{i} + \mathbf{j}$. Point D is such that ABCD is a parallelogram. Find the position vector of D.
- The diagram shows points P, Q and R such that $\overrightarrow{PQ} = \mathbf{a}$ and $\overrightarrow{PR} = 3\mathbf{b}$.

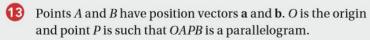
Points M and N are on PQ and PR such that $PM = \frac{1}{3}PQ$ and $\overrightarrow{PN} = \mathbf{b}$.

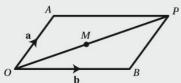


Express \overrightarrow{MN} in terms of **a** and **b** and hence prove that MN is parallel to QR.


- 6 OAB is a triangle with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. M is the midpoint of AB and G is a point on OM such that OG : GM = 2 : 1. N is the midpoint of OA. Use vectors to prove that the points B, G and N are collinear.
- 7 Find the magnitude of the vector $(3 \sin \theta)\mathbf{i} + (5 \cos \theta)\mathbf{j}$ in terms of θ .
- Points M and N have coordinates M(-6, 1) and N(3, 5). Find a unit vector parallel to \overrightarrow{MN} .
- Points P and Q have coordinates (1, -8) and (10, -2). N is a point on PQ such that PN: NQ = 1:2.
 - **a** Find the coordinates of *N*.
 - **b** Calculate the magnitudes of \overrightarrow{OP} , \overrightarrow{ON} and \overrightarrow{PN} . Hence show that ONP is a right angle.

- a Express vectors \overrightarrow{MN} and \overrightarrow{PQ} in terms of a, b, c and d.
- **b** What type of quadrilateral is MNPQ?




- **a** Write down the position vector of P in terms of **a** and **b**.
- **b** Find the position vector of M, the midpoint of AP. Point Q lies on OP. Let $\overrightarrow{OQ} = t\overrightarrow{OP}$.
- c Express \overrightarrow{BQ} in terms of t, **a** and **b**. Hence find the value of t for which BQM is a straight line.

Point H lies on PQ and $\overline{PH} = t \overline{PQ}$, with 0 < t < 1. Let O be the origin.

- a Express the vector \overrightarrow{OH} and its length in terms of t.
- **b** Hence find the minimum possible distance of H from the origin, giving your answer in exact form.

M is the midpoint of *OP*.

- a Show that M lies on AB and determine the ratio AM : MB.
- b What conclusion can you make about the diagonals of a parallelogram?

Mixed practice 12

1
$$3\sqrt{2}$$

3 a
$$\begin{pmatrix} 4.5 \\ -1 \end{pmatrix}$$

b
$$\frac{3}{2}\sqrt{4}$$

4
$$6i - 2j$$

$$\mathbf{5} \ \overrightarrow{MN} = \mathbf{b} - \frac{1}{3}\mathbf{a}$$

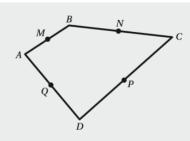
$$7\sqrt{9+16\cos^2\theta}$$

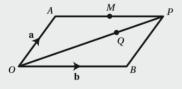
8
$$\pm \left(\frac{9}{\sqrt{97}}\mathbf{i} + \frac{4}{\sqrt{97}}\mathbf{j}\right)$$

9 a
$$(4,-6)$$

b
$$\overrightarrow{OP} = \sqrt{65}$$
, $\overrightarrow{ON} = 2\sqrt{13}$, $\overrightarrow{PN} = \sqrt{13}$

10 a
$$\overrightarrow{MN} = \frac{1}{2}(\mathbf{c} - \mathbf{a}), \overrightarrow{PQ} = \frac{1}{2}(\mathbf{a} - \mathbf{c})$$


b Parallelogram


b
$$a + \frac{1}{2}$$

c
$$t\mathbf{a} + (t-1)\mathbf{b}; t = \frac{2}{3}$$

12 a
$$\binom{5-3t}{2+t}$$
; $\sqrt{10t^2-26t+29}$ b $\frac{11\sqrt{10}}{10}$

b Diagonals bisect each other

