Mixed practice 1

(1) Prove that the product of any two odd numbers is always odd.
(2) Prove that if n is even then n^{2} is divisible by 4 .
(3) Prove that if $\frac{a}{b}=\frac{c}{d}$ it does not follow that $a=c$ and $b=d$.
4) Prove the following statement or disprove it with a counter example:
'The sum of two numbers is always larger than their difference.'
(5) Prove that the product of two rational numbers is always rational.

6 Prove that the sum of the interior angles in an n-sided shape is $(180 n-360)^{\circ}$.
7 Given that $x^{3}+y^{3} \equiv(x+y)\left(a x^{2}+b x y+c y^{2}\right)$ find the values of a, b and c.
8 Prove the following statement:
n is odd $\Rightarrow n^{2}+4 n+3$ is a multiple of 4
(9) Prove that the angle from a chord to the centre of a circle is twice the angle to a point on the circumference in the major sector.

10 Prove that all cube numbers are either multiples of 9 or within one of a multiple of 9 .
(11) Prove the following statements, or disprove them with a counter example:
a $a b$ is an integer $\Leftrightarrow a$ is an integer and b is an integer
b a is irrational and b is irrational $\Leftrightarrow a b$ is irrational.
12 Prove that the product of any three consecutive positive integers is a multiple of 6 .
(13) Prove that the difference between the squares of any two odd numbers is a multiple of 8 .
(14) a Prove that $n^{2}-79 n+1601$ is not always prime when n is a positive whole number.
b Prove that $n^{2}-1$ is never prime when n is a whole number greater than 2.
$x=a^{2}-b^{2}$ where a and b are both whole numbers. Prove that x is either odd or a multiple of 4 .

Mixed practice 1

1 Use $a=2 m+1, b=2 n+1$
2 Use $n=2 m$
3 Use a non-reduced fraction
4 Consider, for example, $3+(-2)$ and 3 - (-2)
5 Use definition of rational numbers
6 Subdivide the n-gon as for Exercise 1E question 6
$7 a=1, b=-1, c=1$
8 Factorise and use an exhaustive proof
9 Construct further lines to find isosceles triangles; construct a proof using knowledge of angles in triangles
10 Consider n^{3} where $n=3 k$ or $n=3 k \pm 1$
11 a This does not work in the forward direction, e.g. $a=4, b=0.5$
b This does not work in either direction, e.g. $a=\sqrt{2}, b=\sqrt{2}$ so $a b=2$ or $a b=\pi$, $a=\pi, b=1$
12 Use $a=n-1, b=n$ and $c=n+1$
13 Use $a=2 m+1$ and $b=2 n+1$
14 a e.g. $n=1601 \quad$ b factorise n^{2-1}
15 Factorise and use an exhaustive proof considering whether $a+b$ is odd or even

