Mixed practice 11

(1) In triangle $A B C, A B=6.2 \mathrm{~cm}, C A=8.7 \mathrm{~cm}$ and angle $A C B=37.5^{\circ}$. Find the two possible values of $A B C$.
(2) A vertical tree of height 12 m stands on horizontal ground. The bottom of the tree is at the point B. Observer A, standing on the ground, sees the top of the tree at an angle of elevation of 56°.

a Find the distance of A from the bottom of the tree.
Another observer, M, stands the same distance away from the tree, and $A B M=48^{\circ}$
b Find the distance $A M$.
(3) The diagram shows triangle $A B C$, with $A B=9 \mathrm{~cm}, A C=17 \mathrm{~cm}$ and angle $B A C=40^{\circ}$.

i Find the length of $B C$.
ii Find the area of triangle $A B C$.
iii D is a point on $A C$ such that angle $B D A=63^{\circ}$. Find the length of $B D$.
© OCR, AS GCE Mathematics, Paper 4722, June 2011
(4) The lengths of the three sides of a triangle are $6.4 \mathrm{~cm}, 7.0 \mathrm{~cm}$ and 11.3 cm .
i Find the largest angle in the triangle.
ii Find the area of the triangle.
© OCR, AS GCE Mathematics, Paper 4722, June 2009
(5) In triangle $A B C, A B=2 \sqrt{3}, A C=10$ and angle $B A C=150^{\circ}$. Find the exact length of $B C$.

6 In the obtuse angled triangle $K L M, L M=6.1 \mathrm{~cm}, K M=4.2 \mathrm{~cm}$ and angle $K L M=42^{\circ}$.

Find the area of the triangle.
7 In triangle $A B C$, angle $A B=10 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$.
a Find the exact value of $\cos (\angle A B C)$
b Find the exact value of $\sin (\angle A B C)$.
c Find the exact value of the area of the triangle.
8 In triangle $A B C, A B=5, A C=x$ and the angle at A is θ. M is the midpoint of the side $A C$.
a Use the cosine rule to find an expression for $M B^{2}$ in terms of x and θ.
b Given that $B C=M B$, show that $\cos \theta=\frac{3 x}{20}$.
c If $x=5$, find the value of the angle θ such that $M B=B C$.
9 Two radar stations, A and B, are 20 km apart. B is due east of A. Station B detects a ship on a bearing of 310°. The same ship is 15 km from station A.
a Find the two possible bearings of the ship from station A.
b Hence find the distance between the two possible positions of the ship.
(10) A regular pentagon has area $200 \mathrm{~cm}^{2}$. Find the length of each side.
(11) In triangle $A B C, A B=10, B C=5, C A=x$ and angle $C A B=\theta$.
a Show that $x^{2}-20 x \cos \theta+75=0$.
b Find the range of values of $\cos \theta$ for which the equation in part a has real roots.
c Hence find the set of values of θ for which it is possible to construct triangle $A B C$ with the given measurements.

Mixed practice 11

$158.7^{\circ}, 121^{\circ}$
2 a 8.09 m
b 6.58 m
3 a 11.6 cm
b $49.2 \mathrm{~cm}^{2}$
c 6.49 cm
4 a 115°
b $20.3 \mathrm{~cm}^{2}$
$52 \sqrt{43} \mathrm{~cm}$
$67.23 \mathrm{~cm}^{2}$
7 a $\frac{23}{32}$
b $\frac{3 \sqrt{55}}{32}$
c $\frac{15 \sqrt{55}}{4}$
8 a $\frac{x^{2}}{4}+25-5 x \cos \theta$
b Proof
c $\theta=41.4^{\circ}$

9 a 009° or 071°
b 15.5 km
1010.8 cm

11 a Proof
b $\left[-1,-\frac{\sqrt{3}}{2}\right] \cup\left[\frac{\sqrt{3}}{2}, 1\right] \quad$ c $0^{\circ}<\theta \leqslant 30^{\circ}$

